针对原始的仿射传播(affinity propagation,AP)聚类算法难以处理多代表点聚类,以及空间和时间开销过大等问题,提出了快速多代表点仿射传播(multi-exemplar affinity propagation using fast reduced set density estimator,FRSMEAP)聚...针对原始的仿射传播(affinity propagation,AP)聚类算法难以处理多代表点聚类,以及空间和时间开销过大等问题,提出了快速多代表点仿射传播(multi-exemplar affinity propagation using fast reduced set density estimator,FRSMEAP)聚类算法。该算法在聚类初始阶段,引入快速压缩集密度估计算法(fast reduced set density estimator,FRSDE)对大规模数据集进行预处理,得到能够充分代表样本属性的压缩集;在聚类阶段,使用多代表点仿射传播(multi-exemplar affinity propagation,MEAP)聚类算法,获得比AP更加明显的聚类决策边界,从而提高聚类的精度;最后再利用K-邻近(K-nearest neighbor,KNN)算法分配剩余点得到最终的数据划分。在人工数据集和真实数据集上的仿真实验结果表明,该算法不仅能在大规模数据集上进行聚类,而且具有聚类精度高和运行速度快等优点。展开更多
多视角数据的涌现对传统单视角聚类算法提出了挑战.利用单视角聚类算法独立地对每个视角进行划分,再通过集成机制获取全局划分的方法,人为地割裂了视角之间的内在联系,难以获得理想的聚类效果.针对此问题,提出了一个多视角聚类模型.该...多视角数据的涌现对传统单视角聚类算法提出了挑战.利用单视角聚类算法独立地对每个视角进行划分,再通过集成机制获取全局划分的方法,人为地割裂了视角之间的内在联系,难以获得理想的聚类效果.针对此问题,提出了一个多视角聚类模型.该模型不仅考虑了视角内的划分质量,还兼顾了视角间的协同学习机制.对于视角内的划分,为了捕捉更为准确的簇内结构信息,采用多代表点的簇结构表示策略;对于视角间的协同学习机制,假设簇中代表点在不同视角下,其代表性保持.因此,在该模型基础上提出了基于代表点一致性约束的多视角模糊聚类算法(multi-view fuzzy clustering with a medoid invariant constraint,简称MFCMddI).该算法通过最大化两两相邻视角下代表点权重系数的乘积之和来保证代表点一致性.MFCMddI的目标函数可通过引入拉格朗日乘子和KKT条件进行优化.在人工数据集以及真实数据集上的实验结果均表明,该算法相对于所引入的对比算法而言具有一定的优势.展开更多
文摘针对原始的仿射传播(affinity propagation,AP)聚类算法难以处理多代表点聚类,以及空间和时间开销过大等问题,提出了快速多代表点仿射传播(multi-exemplar affinity propagation using fast reduced set density estimator,FRSMEAP)聚类算法。该算法在聚类初始阶段,引入快速压缩集密度估计算法(fast reduced set density estimator,FRSDE)对大规模数据集进行预处理,得到能够充分代表样本属性的压缩集;在聚类阶段,使用多代表点仿射传播(multi-exemplar affinity propagation,MEAP)聚类算法,获得比AP更加明显的聚类决策边界,从而提高聚类的精度;最后再利用K-邻近(K-nearest neighbor,KNN)算法分配剩余点得到最终的数据划分。在人工数据集和真实数据集上的仿真实验结果表明,该算法不仅能在大规模数据集上进行聚类,而且具有聚类精度高和运行速度快等优点。
文摘多视角数据的涌现对传统单视角聚类算法提出了挑战.利用单视角聚类算法独立地对每个视角进行划分,再通过集成机制获取全局划分的方法,人为地割裂了视角之间的内在联系,难以获得理想的聚类效果.针对此问题,提出了一个多视角聚类模型.该模型不仅考虑了视角内的划分质量,还兼顾了视角间的协同学习机制.对于视角内的划分,为了捕捉更为准确的簇内结构信息,采用多代表点的簇结构表示策略;对于视角间的协同学习机制,假设簇中代表点在不同视角下,其代表性保持.因此,在该模型基础上提出了基于代表点一致性约束的多视角模糊聚类算法(multi-view fuzzy clustering with a medoid invariant constraint,简称MFCMddI).该算法通过最大化两两相邻视角下代表点权重系数的乘积之和来保证代表点一致性.MFCMddI的目标函数可通过引入拉格朗日乘子和KKT条件进行优化.在人工数据集以及真实数据集上的实验结果均表明,该算法相对于所引入的对比算法而言具有一定的优势.