期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多/高光谱遥感数据的类立体纹理特征 被引量:1
1
作者 赵巍 崔淑梅 +1 位作者 吴锐 刘家锋 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第5期86-91,共6页
鉴于多/高光谱遥感数据同源同点多波段同时获取的特点,提出了基于灰度级差关联概率矩阵(Gray Level Difference Associated Possibility matrix,GLDAP)的视觉差异分析方法,以有效地利用图像底层数据及数据之间的相关性.根据地物的波谱特... 鉴于多/高光谱遥感数据同源同点多波段同时获取的特点,提出了基于灰度级差关联概率矩阵(Gray Level Difference Associated Possibility matrix,GLDAP)的视觉差异分析方法,以有效地利用图像底层数据及数据之间的相关性.根据地物的波谱特性,统计两波段图像灰度协同变化的规律并记录在GLDAP矩阵中,基于此矩阵提取了遥感数据的类立体纹理特征.将该方法与灰度共生矩阵(GLCM)纹理分析方法的遥感地物分类性能比较,实验结果表明:基于GLDAP的纹理提取及分析表现出良好的性能,3种地物分类效果明显优于GLCM方法,能够减少因单波段中地物可分性差而导致的误识,克服了GLCM方法对图像统计描述的局限性,在相同时间开销下GLDAP方法较GLCM有更优的解译分析精度. 展开更多
关键词 遥感图像解译 多/高光谱数据 地物提取 类立体纹理 灰度级差关联概率矩阵
在线阅读 下载PDF
Junk band recovery for hyperspectral image based on curvelet transform
2
作者 孙蕾 罗建书 《Journal of Central South University》 SCIE EI CAS 2011年第3期816-822,共7页
Under consideration that the profiles of bands at close wavelengths are quite similar and the curvelets are good at capturing profiles, a junk band recovery algorithm for hyperspectral data based on curvelet transform... Under consideration that the profiles of bands at close wavelengths are quite similar and the curvelets are good at capturing profiles, a junk band recovery algorithm for hyperspectral data based on curvelet transform is proposed. Both the noisy bands and the noise-free bands are transformed via curvelet band by band. The high frequency coefficients in junk bands are replaced with linear interpolation of the high frequency coefficients in noise-flee bands, and the low frequency coefficients remain the same to keep the main spectral characteristics from being distorted. Jutak bands then are recovered after the inverse curvelet transform. The performance of this method is tested on the hyperspectral data cube obtained by airborne visible/infrared imaging spectrometer (AVIRIS). The experimental results show that the proposed method is superior to the traditional denoising method BayesShrink and the art-of-state Curvelet Shrinkage in both roots of mean square error (RMSE) and peak-signal-to-noise ratio (PSNR) of recovered bands. 展开更多
关键词 hyperspectral image curvelet transform junk band denosing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部