期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
融合外部注意力机制的序列到点非侵入式负荷分解 被引量:2
1
作者 李利娟 刘海 +2 位作者 刘红良 张青松 陈永东 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期846-854,共9页
非侵入式负荷分解可以深度挖掘用户电力消耗数据蕴含的信息价值,为电力设备故障监测、需求响应等决策分析提供重要参考.为有效解决非侵入式负荷分解算法训练时间成本与分解精度间的冲突,提出一种融合外部注意力机制的序列到点非侵入式... 非侵入式负荷分解可以深度挖掘用户电力消耗数据蕴含的信息价值,为电力设备故障监测、需求响应等决策分析提供重要参考.为有效解决非侵入式负荷分解算法训练时间成本与分解精度间的冲突,提出一种融合外部注意力机制的序列到点非侵入式负荷分解算法.首先,将总负荷功率消耗序列进行数据清理、标准化等预处理,以固定窗口长度构建训练输入数据,输入数据通过编码层自动提取设备特征;然后,设计外部注意力机制增强重要特征权值;最终,输入到解码层得到负荷分解结果.利用REDD与UK-DALE两种公开数据集进行模型仿真计算,在信号聚合误差、平均绝对误差、标准化分解误差指标、模型分解曲线、特征图和用户耗能等方面进行对比分析,本文模型克服了卷积层注意力分散的缺点,增强了对有效信息的提取与利用能力,在未增加训练时间成本的前提下具有更高的分解精度. 展开更多
关键词 非侵入式负荷分解 外部注意力机制 神经网络 序列到点
在线阅读 下载PDF
融合注意力机制的改进型DeepLabv3+语义分割
2
作者 闫河 雷秋霞 王旭 《光学精密工程》 北大核心 2025年第1期123-134,共12页
针对DeepLabv3+语义分割网络计算复杂度高、对图像细节提取能力弱、分割的图像边界模糊的问题,提出了一种融合注意力机制的改进型DeepLabv3+语义分割网络。以轻量级网络MobileNetV2为骨干,在保持较高表征能力的同时显著减少模型参数,在... 针对DeepLabv3+语义分割网络计算复杂度高、对图像细节提取能力弱、分割的图像边界模糊的问题,提出了一种融合注意力机制的改进型DeepLabv3+语义分割网络。以轻量级网络MobileNetV2为骨干,在保持较高表征能力的同时显著减少模型参数,在骨干网络的低层特征后面加入轻量级、无参数注意力机制(Simple,Parameter-Free Attention Module,SimAM),对输入的特征进行加权,以增强关键特征的提取能力。将ASPP模块的全局平均池化替换成Haar小波变换下采样(Haar Wavelet Downsampling,HWD),以避免丢失空间信息,同时在ASPP模块之后加入外部注意力机制(External Attention,EANet),以更好地利用上下文信息,实现多尺度融合,从而提升语义理解能力和语义分割的准确性。实验结果表明,该模型在VOC2012数据集上相较于原有的DeepLabv3+语义分割模型,平均交并比(mIoU)提高了2.82%。本文提出的改进模型显著提高了模型语义分割的精度,为计算机视觉领域应用提供了新的思路。 展开更多
关键词 语义分割 DeepLabv3+ Haar小波变换下采样 外部注意力机制 多尺度融合
在线阅读 下载PDF
基于Bi-GRU和外部注意网络的会话推荐模型 被引量:2
3
作者 张海桃 祁正华 +1 位作者 谭小辉 何菲菲 《南京邮电大学学报(自然科学版)》 北大核心 2023年第5期92-101,共10页
基于会话的推荐系统(SRS)可以根据匿名用户的历史行为序列预测用户的下一个动作。现有推荐模型大都会忽略当前会话与其他会话的潜在相关性,不能捕捉用户的主要意图。为解决该问题,提出一种基于Bi-GRU和外部注意网络的会话推荐模型(SR-BG... 基于会话的推荐系统(SRS)可以根据匿名用户的历史行为序列预测用户的下一个动作。现有推荐模型大都会忽略当前会话与其他会话的潜在相关性,不能捕捉用户的主要意图。为解决该问题,提出一种基于Bi-GRU和外部注意网络的会话推荐模型(SR-BGEAN)。该模型首次将外部注意机制引入会话推荐任务中,并结合Bi-GRU进行建模,同时捕获会话内物品双向顺序信息和会话样本间全局信息,形成最终的兴趣表示。在Diginetica和Yoochoose数据集上的实验结果表明,相对最优的基线模型,SR-BGEAN模型在推荐的前20个项目中的命中率更高,可达到71.50%。 展开更多
关键词 会话推荐 外部注意力机制 Bi-GRU 多头注意机制
在线阅读 下载PDF
基于EA-BiLSTM-SCSO的多步逐小时参考作物蒸腾量预测方法 被引量:1
4
作者 谢伟明 张钟莉莉 +3 位作者 陶建平 曲明山 魏一博 张石锐 《节水灌溉》 北大核心 2025年第3期57-63,70,共8页
在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,... 在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,使用沙猫群算法(SCSO)优化模型超参数,实现逐小时参考作物蒸腾量预测。首先利用SCSO方法对EA-BiLSTM模型进行优化,优化后的算法在70个epoch后收敛,平均R^(2)升至0.750;进而通过特征相关性分析,将模型输入的特征数据由10个减少为历史ET0、太阳辐射、空气温度、空气湿度和最大风速5个。以北京市昌平区的国家精准农业研究示范基地大田种植区ET0预测为例进行了方法验证,在对未来第7小时的预测中,R^(2)从0.619提高到0.644,获得了更好的预测效果;最后通过对模型可解释性分析证实,历史ET0对预测的贡献最高,贡献率达到了0.043,其次是空气湿度和总辐射。与DT(决策树)、Lasso(最小绝对收缩和选择算法)、LMP(多层感知机)、CNN(卷积神经网络)等预测方法的对比结果表明,采用EA-BiLSTM-SCSO的预测结果在MAE和MSE指标上均获得了最低的误差值,在R^(2)指标上,EA-BiLSTM-SCSO模型平均达到0.722较CNN模型提升了12.6%。研究验证了深度学习与特征工程在提高作物参考蒸腾量逐小时预测精度方面的优势。该方法在智慧灌溉中用于估算作物的水分需求,能够实现对未来灌溉的精准预测,从而制定合理的灌溉计划,提高灌溉水利用效率,进行有效的灌溉用水调度。 展开更多
关键词 BiLSTM 外部注意力机制 沙猫群优化算法 逐小时参考作物蒸腾量预测 模型可解释性
在线阅读 下载PDF
基于多小波基DWT分解的1DCNN-KAN-EA机械损伤识别方法
5
作者 王雷 付海朋 《机电工程》 2025年第9期1707-1715,1829,共10页
针对传统机械损伤识别方法处理复杂振动信号时,特征表达能力不足、识别准确率低的问题,提出了一种基于多小波基离散小波变换(DWT)分解,并结合了一维卷积神经网络(1DCNN)、Kolmogorov-Arnold网络(KAN)和外部注意力(EA)机制的机械损伤识... 针对传统机械损伤识别方法处理复杂振动信号时,特征表达能力不足、识别准确率低的问题,提出了一种基于多小波基离散小波变换(DWT)分解,并结合了一维卷积神经网络(1DCNN)、Kolmogorov-Arnold网络(KAN)和外部注意力(EA)机制的机械损伤识别方法。首先,采用多小波基DWT分解对振动信号进行了多样性描述,并以分解得到的小波系数集合构建特征向量作为1DCNN的输入,以提取深层次故障特征;然后,构建了KAN线性层取代全连接层,进行了损伤特征识别,克服了传统多层感知机(MLP)结构在节点采用固定激活函数和线性权重的固有局限性,增强了模型对复杂损伤特征的表达能力;接着,引入EA捕捉了不同样本之间的潜在关联,提高了模型对全局上下文信息的捕捉能力;最后,在包含5类不同损伤状态的机翼大梁数据集上进行了实验研究。研究结果表明:基于多小波基DWT分解的1DCNN-KAN-EA模型平均准确率高达99.41%,相比于1DCNN、KAN分别提高了1.56%、2.54%。对比其他模型,基于多小波基DWT分解的1DCNN-KAN-EA模型在准确识别损伤特征方面具有优越性,各项指标得到明显提升,其效果优于只基于单一小波基DWT分解下的模型。 展开更多
关键词 机械运行与维修 离散小波变换 一维卷积神经网络 Kolmogorov-Arnold网络 外部注意力机制 多层感知机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部