An improved type of elliptical jacket polarization maintaining fiber was developed by using a modified chemical vapor deposition method with special treatment. Different from conventional elliptical jacket, the shape ...An improved type of elliptical jacket polarization maintaining fiber was developed by using a modified chemical vapor deposition method with special treatment. Different from conventional elliptical jacket, the shape of the stress jacket was transmuted. The cross-section of fiber consists of 5 layers: substrate, outer cladding, stress jacket, inner cladding and core. The cross sectional component distribution was investigated by electron probe microscopy and energy dispersive spectrum. The finite element method was used to calculate the stress birefringence. Based on the analyses of the microstructure, the technological process is improved. The temperature cycling test of the fiber wound into gyroscope coils was performed. The results show that the fiber possesses superior performance at high and low temperatures compared with other fibers. The high homogeneity is achieved by well-controlled modified chemical vapor deposition process. A homogeneous length of 8 km fiber is obtained. With advantages in homogeneity and length, the fiber has great potential in applications such as fiber gyroscopes, fiber hydrophone and other optical fiber sensors.展开更多
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of...The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.展开更多
基金Project(50272019) supported by the National Natural Science Foundation of China project supported by China Postdoc toral Science Foundation
文摘An improved type of elliptical jacket polarization maintaining fiber was developed by using a modified chemical vapor deposition method with special treatment. Different from conventional elliptical jacket, the shape of the stress jacket was transmuted. The cross-section of fiber consists of 5 layers: substrate, outer cladding, stress jacket, inner cladding and core. The cross sectional component distribution was investigated by electron probe microscopy and energy dispersive spectrum. The finite element method was used to calculate the stress birefringence. Based on the analyses of the microstructure, the technological process is improved. The temperature cycling test of the fiber wound into gyroscope coils was performed. The results show that the fiber possesses superior performance at high and low temperatures compared with other fibers. The high homogeneity is achieved by well-controlled modified chemical vapor deposition process. A homogeneous length of 8 km fiber is obtained. With advantages in homogeneity and length, the fiber has great potential in applications such as fiber gyroscopes, fiber hydrophone and other optical fiber sensors.
文摘The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.