期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于分割与深度学习网络的复杂电气图纸元件识别
1
作者 沈小军 王玥 《同济大学学报(自然科学版)》 北大核心 2025年第5期813-822,共10页
针对复杂电气图纸的像素稀疏性、尺寸差异性、数量差异性导致的元件漏检、误检问题,提出了一种基于分割与深度学习网络的元件识别方法。首先,构建图纸分割算法以减小图纸与元件的尺寸差异。其次,基于YOLOv5网络提出一种四尺度检测机制,... 针对复杂电气图纸的像素稀疏性、尺寸差异性、数量差异性导致的元件漏检、误检问题,提出了一种基于分割与深度学习网络的元件识别方法。首先,构建图纸分割算法以减小图纸与元件的尺寸差异。其次,基于YOLOv5网络提出一种四尺度检测机制,增加两条特征传输路径,获取表征元件细节的极浅层特征图。同时,改进初始锚框选取方式,以重叠面积、距离、角度、宽高度4个因素表征定位损失,改善网络定位效果,提高网络收敛速度。在包含17种典型元件的数据集上验证了该方法的有效性,实验结果表明,该方法的平均均值精度可达96.7%,比原始网络提高了21.5%,网络训练速度也明显优于其他算法,具有较好的综合识别性能。 展开更多
关键词 电气元件识别 深度学习网络 四尺度检测 图纸分割 复杂电气图纸
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部