期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于相关性差异化迁移的渐进式神经网络
1
作者 蔡昌骁 王士同 《计算机应用》 CSCD 北大核心 2023年第7期2107-2115,共9页
虽然经典的渐进式神经网络(PNN)通过获取先前任务的经验知识来提高神经网络在当前任务中的性能,但忽略了在渐进任务较多时渐进任务间的相关性差异对网络性能的影响。针对该场景,提出一种基于相关性差异化迁移的渐进式神经网络(CDT-PNN)... 虽然经典的渐进式神经网络(PNN)通过获取先前任务的经验知识来提高神经网络在当前任务中的性能,但忽略了在渐进任务较多时渐进任务间的相关性差异对网络性能的影响。针对该场景,提出一种基于相关性差异化迁移的渐进式神经网络(CDT-PNN)。首先使用基于余弦相似度的算法评估两个渐进任务的相关性;然后利用当前任务和先前任务之间的相关性来决定神经网络的知识参数传递,并删除与当前渐进任务呈负相关的先前渐进任务的知识参数;最后依据任务间相关性按一定比例随机抽取与当前渐进任务呈正相关的先前渐进任务的知识参数进行参数迁移。在添加了不同程度噪声的cifar-100数据集和mnist数据集上进行实验。结果显示,与PNN相比,CDT-PNN在cifar-100和mnist数据集上的实验任务平均分类精度(AA)提高了6.6个百分点和1.58个百分点。这说明,在复杂多任务场景下CDT-PNN能获得比PNN更好的性能。 展开更多
关键词 渐进式神经网络 相关性差异 渐进任务 参数传递 持续学习 复杂多任务
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部