期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度森林联合模型:一种新的复杂医学影像数据的策略
1
作者 周屹 邵方 +2 位作者 尤东方 陆梦依 赵杨 《中国卫生统计》 北大核心 2025年第4期510-515,共6页
目的比较深度森林联合模型、深度森林以及随机森林在医学影像数据分类中的预测性能。方法本研究提出深度森林联合模型,通过Sobol-MDA(Sobol-mean decrease accuracy)结合深度森林级联结构和随机森林的特征提取能力,对模拟实验和真实医... 目的比较深度森林联合模型、深度森林以及随机森林在医学影像数据分类中的预测性能。方法本研究提出深度森林联合模型,通过Sobol-MDA(Sobol-mean decrease accuracy)结合深度森林级联结构和随机森林的特征提取能力,对模拟实验和真实医学影像数据进行分析。模拟实验涵盖结局变量不均衡、变量间非线性关系、噪声变量、多重共线性及交互作用等场景。实例分析基于腮腺MRI数据,比较各模型在曲线下面积(area under curve,AUC)值等指标上的表现。结果在模拟实验以及实例分析中,深度森林联合模型表现优越,特别是在复杂交互作用场景下,其预测性能显著优于深度森林或随机森林模型。结论深度森林联合模型在应对复杂医学影像数据分类任务中具有显著优势,尤其在处理变量间存在高阶交互作用时,其预测性能优于深度森林。 展开更多
关键词 深度森林联合模型 Sobol-MDA 高阶交互作用 复杂医学影像分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部