期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于互STFT复数卷积神经网络的声源定位方法
1
作者 简泽明 周超 +2 位作者 胡君豪 聂磊 刘梦然 《传感器与微系统》 北大核心 2025年第8期27-31,共5页
当前声源定位中的深度学习算法多依赖单一实数特征,未能充分挖掘麦克风阵列间的空间信息与频谱特征的多样性。为此,提出一种基于互短时傅里叶变换(STFT)复数卷积神经网络(CCNN)的声源定位方法。该方法以融合幅度与相位信息的互STFT谱作... 当前声源定位中的深度学习算法多依赖单一实数特征,未能充分挖掘麦克风阵列间的空间信息与频谱特征的多样性。为此,提出一种基于互短时傅里叶变换(STFT)复数卷积神经网络(CCNN)的声源定位方法。该方法以融合幅度与相位信息的互STFT谱作为输入特征,并通过CCNN进行特征提取,以提升定位精度与鲁棒性。通过仿真与实验,对比分析了互STFT特征及三种典型特征在实数与复数网络中的定位性能。结果表明,所提方法具有显著优势,定位误差较实数方法降低了51.06%,验证了其在特征表达能力和定位精度方面的有效性,为深度学习在声源定位领域的进一步发展提供了新思路。 展开更多
关键词 声源定位 麦克风阵列 互短时傅里叶变换 复数卷积神经网络
在线阅读 下载PDF
复数卷积神经网络滚动轴承故障诊断研究 被引量:14
2
作者 周林春 陈春俊 《中国测试》 CAS 北大核心 2020年第11期109-115,共7页
针对基于实数卷积神经网络的滚动轴承故障诊断方法对振动信号幅相信息利用不充分的问题,提出一种基于复数卷积神经网络的故障诊断模型。该模型以一维振动信号经连续小波变换得到的时频复数矩阵为输入,通过复数卷积神经网络独有的复数卷... 针对基于实数卷积神经网络的滚动轴承故障诊断方法对振动信号幅相信息利用不充分的问题,提出一种基于复数卷积神经网络的故障诊断模型。该模型以一维振动信号经连续小波变换得到的时频复数矩阵为输入,通过复数卷积神经网络独有的复数卷积方式提取和融合信号的幅值和相位特征,并通过全连接层和Softmax实现故障诊断结果输出。结果表明:采用复数卷积神经网络模型的故障诊断方法具有更强的抗噪声鲁棒性,在添加信号噪声的不同转速工况之间能保持更好的泛化性能,可提高滚动轴承故障诊断的准确率。 展开更多
关键词 滚动轴承 故障诊断 连续小波变换 复数卷积神经网络
在线阅读 下载PDF
基于双通道复数卷积神经网络的DOA估计算法 被引量:2
3
作者 俞帆 陈格格 沈明威 《现代雷达》 CSCD 北大核心 2022年第12期81-86,共6页
针对低信噪比下基于实数卷积神经网络(RV-CNN)的阵列波达方向(DOA)估计方法对接收信号幅相特征提取不充分的问题,引入复数卷积神经网络(CV-CNN)进行DOA估计。为进一步提高分类准确率,构建了一种基于复数卷积神经网络的非对称双通道DOA... 针对低信噪比下基于实数卷积神经网络(RV-CNN)的阵列波达方向(DOA)估计方法对接收信号幅相特征提取不充分的问题,引入复数卷积神经网络(CV-CNN)进行DOA估计。为进一步提高分类准确率,构建了一种基于复数卷积神经网络的非对称双通道DOA估计模型(CV-DCNN)。该模型以阵列接收信号的复数协方差矩阵作为输入,分别输入由空洞卷积层组成的第一通道和由标准卷积层组成的第二通道中,其中空洞卷积在不损失角度信息的情况下,增大特征图的感受野。通过复数卷积神经网络(CV-CNN)独有的复数卷积方式提取和融合信号的幅值和相位特征,将双通道提取的特征融合后通过全连接层和sigmoid函数实现角度分类结果输出。实验结果表明,CV-CNN比RV-CNN有更快的收敛速度,在低信噪比和少快拍条件下,CV-CNN比RV-CNN有更高的估计精度,而CV-DCNN比CV-CNN在收敛速度和估计精度上又有了进一步的提升。 展开更多
关键词 阵列达波方向估计 复数卷积神经网络 复数双通道卷积神经网络 空洞卷积
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
4
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数卷积神经网络 有监督学习
在线阅读 下载PDF
基于混合型复数域卷积神经网络的三维转动舰船目标识别 被引量:11
5
作者 张云 化青龙 +1 位作者 姜义成 徐丹 《电子学报》 EI CAS CSCD 北大核心 2022年第5期1042-1049,共8页
在较高海情下,由于舰船目标处于随机摆动的非平稳运动状态,常规合成孔径雷达(Synthetic Aperture Radar,SAR)成像处理会使得目标散焦、方位模糊,从而导致三维转动舰船目标识别准确率低.本文提出一种混合型复数域卷积神经网络(Mix-type C... 在较高海情下,由于舰船目标处于随机摆动的非平稳运动状态,常规合成孔径雷达(Synthetic Aperture Radar,SAR)成像处理会使得目标散焦、方位模糊,从而导致三维转动舰船目标识别准确率低.本文提出一种混合型复数域卷积神经网络(Mix-type Complex-Valued Convolutional Neural Network,Mix-CV-CNN),并推导Mix-CV-CNN前向传播与反向传播算法.三维转动舰船目标经过SAR成像处理后存在剩余相位信息,Mix-CV-CNN能充分利用SAR复数域图像的幅度和相位信息,在不进行目标重聚焦的情况下,较好完成SAR复杂运动舰船目标的识别.实验表明,Mix-CV-CNN相较于具有相同自由度的实数域卷积神经网络(Real-Valued Convolutional Neural Network,RV-CNN)识别性能有所提高,实测数据识别平均准确率提高3.85%. 展开更多
关键词 合成孔径雷达 复数卷积神经网络 三维转动 目标散焦 舰船目标识别 混合型复数卷积神经网络
在线阅读 下载PDF
SAR-ATR系统复数对抗样本生成方法
6
作者 张梦君 熊邦书 《应用科学学报》 CAS CSCD 北大核心 2024年第5期747-756,共10页
针对现有对抗攻击方法只能用于攻击实数卷积神经网络这一限制,提出了一种基于生成对抗网络的复数对抗样本生成方法。首先,设计了一种产生有效对抗样本的复数模型,并引入了复数计算模块;其次,利用残差神经网络作为基本骨架,将预训练的复... 针对现有对抗攻击方法只能用于攻击实数卷积神经网络这一限制,提出了一种基于生成对抗网络的复数对抗样本生成方法。首先,设计了一种产生有效对抗样本的复数模型,并引入了复数计算模块;其次,利用残差神经网络作为基本骨架,将预训练的复数网络作为判别器实现对抗训练,以增强对抗样本的攻击能力;最后,通过替代模型实现可迁移的对抗攻击,以此实现了更高的攻击成功率。实验结果表明,所提方法在有目标攻击和无目标攻击任务下的成功率分别达到了76.338%和87.841%,迁移的成功率更高且对抗样本与原始干净样本更为接近。所提方法将对抗攻击扩展到复数神经网络后,避免了合成孔径雷达目标信息和精度的丢失,为实际合成孔径雷达自动目标识别系统的安全性和鲁棒性提供了参考方案。 展开更多
关键词 生成对抗网络 对抗样本 合成孔径雷达自动目标识别系统 复数卷积神经网络 有目标攻击 无目标攻击
在线阅读 下载PDF
基于深度学习的雷达成像技术研究进展 被引量:6
7
作者 张云 穆慧琳 +1 位作者 姜义成 丁畅 《雷达科学与技术》 北大核心 2021年第5期467-478,共12页
成像雷达具有全天时、全天候、远距离、高分辨对地观测的能力,使得雷达系统具有对观测区域进行成像和解译的能力。利用先进信号处理技术实现实时高分辨成像以满足图像解译的需求是雷达成像技术研究的重要目的和意义。随着深度学习的迅... 成像雷达具有全天时、全天候、远距离、高分辨对地观测的能力,使得雷达系统具有对观测区域进行成像和解译的能力。利用先进信号处理技术实现实时高分辨成像以满足图像解译的需求是雷达成像技术研究的重要目的和意义。随着深度学习的迅速兴起,深度学习网络在逆问题求解中得到广泛应用,也为提升成像质量和成像效率提供新的求解思路。本文基于雷达成像数学模型将雷达成像问题建模为成像逆问题,从逆问题求解的角度分析了基于深度学习的雷达成像方法的可行性。并综述了近年来雷达深度学习技术在合成孔径雷达(Synthetic Aperture Radar,SAR)、逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)、SAR运动目标成像等雷达成像领域的研究现状,在此基础上探讨了目前面临的亟待解决的问题,并对未来发展方向进行了展望。 展开更多
关键词 深度学习 雷达成像 逆问题 卷积神经网络 复数卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部