传统的无网格压缩感知在进行波达方向(Direction of Arrival,DOA)估计时,使用凸优化工具箱(如CVX)来求解半正定规划问题(Semi-Definite Programming,SDP),所消耗的时间会随着矢量水听器阵列规模的增加,逐渐增大。为了提高算法的收敛速度...传统的无网格压缩感知在进行波达方向(Direction of Arrival,DOA)估计时,使用凸优化工具箱(如CVX)来求解半正定规划问题(Semi-Definite Programming,SDP),所消耗的时间会随着矢量水听器阵列规模的增加,逐渐增大。为了提高算法的收敛速度,将交替方向乘子法(Alternative Direction Method of Multiplier,ADMM)应用到矢量水听器阵列的DOA估计中,考虑到海洋环境噪声,使用原子范数去噪方法(Atomic Norm Soft Thresholding,AST)来估计线谱参数,将原子范数最小化问题(Atomic Norm Minimization,ANM)转化为SDP问题,使用ADMM对SDP问题进行求解,最后使用对偶多项式估计角度。为了验证ADMM算法的性能,在不同信噪比和矢量阵元数条件下,与快速求根多重信号分类(Root-Multiple Signal Classification,ROOTMUSIC)算法和CVX进行对比仿真实验。结果表明,ADMM在保证DOA估计模型收敛性的同时,提高了算法效率。展开更多
研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于...研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.展开更多
随着大规模数据的增加,解决Lasso问题成为一个新的热点,以往的方法很难满足大数据背景下的时间和效率问题。为了解决大规模数据及高维数据而带来的计算和储存的困难,本文从三个方面分析最新的算法,即一阶方法、随机方法及并行和分布计...随着大规模数据的增加,解决Lasso问题成为一个新的热点,以往的方法很难满足大数据背景下的时间和效率问题。为了解决大规模数据及高维数据而带来的计算和储存的困难,本文从三个方面分析最新的算法,即一阶方法、随机方法及并行和分布计算。本文介绍和分析了解决最小收缩和选择算子(Least absolute shrinkage and selection operator,Lasso)问题的最新算法:梯度下降方法、交替方向乘子法(Alternating direction method of multipliers,ADMM)和坐标下降方法。其中梯度下降结合一阶方法和Nesterov的加速和光滑技术;交替方向乘子方法将随机方法融入在最新的算法中;坐标下降方法利用其坐标系的特点结合一阶方法、随机方法和并行和分布计算,本文分别从原始目标函数和对偶目标函数的角度对算法进行分析和研究。展开更多
约束二维有限脉冲响应(Finite Impulse Response,FIR)滤波器,现有设计算法计算复杂度高.针对二维FIR滤波器的约束最小二乘设计,本文应用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM),研究其并行优化方法.通过模...约束二维有限脉冲响应(Finite Impulse Response,FIR)滤波器,现有设计算法计算复杂度高.针对二维FIR滤波器的约束最小二乘设计,本文应用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM),研究其并行优化方法.通过模型的最大分划,并采用一种松弛技术,提出一个具有高度并行结构的最大分划松弛ADMM算法,分析了算法的计算复杂度,讨论了算法的收敛性,并给出了算法的参数设置方法.实验表明,最大分划松弛ADMM比非松弛的最大分划ADMM收敛快很多;与现有算法相比,提高了计算效率.GPU加速实验中获得的大加速比,表明了所提算法的高度并行性和可扩展性,在图像处理、计算机视觉、模式识别及机器学习等领域有广阔的应用前景.展开更多
文摘传统的无网格压缩感知在进行波达方向(Direction of Arrival,DOA)估计时,使用凸优化工具箱(如CVX)来求解半正定规划问题(Semi-Definite Programming,SDP),所消耗的时间会随着矢量水听器阵列规模的增加,逐渐增大。为了提高算法的收敛速度,将交替方向乘子法(Alternative Direction Method of Multiplier,ADMM)应用到矢量水听器阵列的DOA估计中,考虑到海洋环境噪声,使用原子范数去噪方法(Atomic Norm Soft Thresholding,AST)来估计线谱参数,将原子范数最小化问题(Atomic Norm Minimization,ANM)转化为SDP问题,使用ADMM对SDP问题进行求解,最后使用对偶多项式估计角度。为了验证ADMM算法的性能,在不同信噪比和矢量阵元数条件下,与快速求根多重信号分类(Root-Multiple Signal Classification,ROOTMUSIC)算法和CVX进行对比仿真实验。结果表明,ADMM在保证DOA估计模型收敛性的同时,提高了算法效率。
文摘研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.
文摘随着大规模数据的增加,解决Lasso问题成为一个新的热点,以往的方法很难满足大数据背景下的时间和效率问题。为了解决大规模数据及高维数据而带来的计算和储存的困难,本文从三个方面分析最新的算法,即一阶方法、随机方法及并行和分布计算。本文介绍和分析了解决最小收缩和选择算子(Least absolute shrinkage and selection operator,Lasso)问题的最新算法:梯度下降方法、交替方向乘子法(Alternating direction method of multipliers,ADMM)和坐标下降方法。其中梯度下降结合一阶方法和Nesterov的加速和光滑技术;交替方向乘子方法将随机方法融入在最新的算法中;坐标下降方法利用其坐标系的特点结合一阶方法、随机方法和并行和分布计算,本文分别从原始目标函数和对偶目标函数的角度对算法进行分析和研究。
文摘约束二维有限脉冲响应(Finite Impulse Response,FIR)滤波器,现有设计算法计算复杂度高.针对二维FIR滤波器的约束最小二乘设计,本文应用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM),研究其并行优化方法.通过模型的最大分划,并采用一种松弛技术,提出一个具有高度并行结构的最大分划松弛ADMM算法,分析了算法的计算复杂度,讨论了算法的收敛性,并给出了算法的参数设置方法.实验表明,最大分划松弛ADMM比非松弛的最大分划ADMM收敛快很多;与现有算法相比,提高了计算效率.GPU加速实验中获得的大加速比,表明了所提算法的高度并行性和可扩展性,在图像处理、计算机视觉、模式识别及机器学习等领域有广阔的应用前景.