养殖池塘中溶氧(DO)与鱼、蟹等水产品的生长有着十分密切的关系。为了提高DO的预测精度和有效性,提出了一种基于经验模态分解(EMD)和自适应扰动粒子群优化最小二乘支持向量机(LSSVM)的组合预测模型。首先将DO时间序列通过EMD分解成若干...养殖池塘中溶氧(DO)与鱼、蟹等水产品的生长有着十分密切的关系。为了提高DO的预测精度和有效性,提出了一种基于经验模态分解(EMD)和自适应扰动粒子群优化最小二乘支持向量机(LSSVM)的组合预测模型。首先将DO时间序列通过EMD分解成若干分量,接着对各个分量进行相空间重构,在相空间中用LSSVM对各分量进行建模预测,并使用自适应扰动粒子群算法对LSSVM的超参数进行优化,采用单点迭代法进行多步预测。结果显示:该模型与单一LSSVM预测模型相比,具有良好的预测效果。预测未来4 h DO值时,各项性能指标误差均方根(RMSE)、平均相对误差均值(MAPE)和平均绝对误差(MAE)三项指标分别降低了13.4%、11.3%和1.8%;预测未来24 h DO值时,三项指标分别降低了12.9%、12.1%和2.7%。研究表明:该组合模型可有效提取DO序列特性,具有较高的预测精度和泛化性能。展开更多
针对低信噪比情况下的时延估计,将二次相关(SC)时延估计与经验模态分解(EMD)算法结合,提出了EMD重构二次相关时延估计方法。该方法针对EMD重构时本征模态函数的选择,将倒谱法和谱减法相结合,提出新的本征模态函数中有用信号主导分量和...针对低信噪比情况下的时延估计,将二次相关(SC)时延估计与经验模态分解(EMD)算法结合,提出了EMD重构二次相关时延估计方法。该方法针对EMD重构时本征模态函数的选择,将倒谱法和谱减法相结合,提出新的本征模态函数中有用信号主导分量和噪声主导分量的区分方案。研究结果表明:EMD重构二次相关法较传统二次相关法抗噪性能更优,更能锐化二次相关峰值;在非高斯有色噪声和高斯白噪声情况下,分别将准确估计时延的信噪比降低了4 d B和2 d B。展开更多
文摘养殖池塘中溶氧(DO)与鱼、蟹等水产品的生长有着十分密切的关系。为了提高DO的预测精度和有效性,提出了一种基于经验模态分解(EMD)和自适应扰动粒子群优化最小二乘支持向量机(LSSVM)的组合预测模型。首先将DO时间序列通过EMD分解成若干分量,接着对各个分量进行相空间重构,在相空间中用LSSVM对各分量进行建模预测,并使用自适应扰动粒子群算法对LSSVM的超参数进行优化,采用单点迭代法进行多步预测。结果显示:该模型与单一LSSVM预测模型相比,具有良好的预测效果。预测未来4 h DO值时,各项性能指标误差均方根(RMSE)、平均相对误差均值(MAPE)和平均绝对误差(MAE)三项指标分别降低了13.4%、11.3%和1.8%;预测未来24 h DO值时,三项指标分别降低了12.9%、12.1%和2.7%。研究表明:该组合模型可有效提取DO序列特性,具有较高的预测精度和泛化性能。
文摘针对低信噪比情况下的时延估计,将二次相关(SC)时延估计与经验模态分解(EMD)算法结合,提出了EMD重构二次相关时延估计方法。该方法针对EMD重构时本征模态函数的选择,将倒谱法和谱减法相结合,提出新的本征模态函数中有用信号主导分量和噪声主导分量的区分方案。研究结果表明:EMD重构二次相关法较传统二次相关法抗噪性能更优,更能锐化二次相关峰值;在非高斯有色噪声和高斯白噪声情况下,分别将准确估计时延的信噪比降低了4 d B和2 d B。