期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
复合预测在马尾松林分蓄积量生长过程中的应用 被引量:1
1
作者 施本俊 黎德丘 《云南林业调查规划》 1994年第4期12-15,共4页
用林分林龄——公顷蓄积量序列,先用两种方法建立回归曲线模型,进行年龄——公顷蓄积量预测,然后根据两种回归曲线模型预测值,用复合预测方法进行预测,从而减小预测误差,提高预测精度,使预测结果更符合客观实际。
关键词 复合预测模型 回归曲线模型 马尾松 生长过程 林分蓄积蓄 林分年龄-公顷蓄积量
在线阅读 下载PDF
Predicting Complex Word Emotions and Topics through a Hierarchical Bayesian Network 被引量:2
2
作者 Kang Xin Ren Fuji 《China Communications》 SCIE CSCD 2012年第3期99-109,共11页
In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined... In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined as the combination of one or more singular emotions from following 8 basic emotion categories: joy, love, expectation, sur- prise, anxiety, sorrow, anger and hate. We use a hi- erarchical Bayesian network to model the emotions and topics in the text. Both the complex emotions and topics are drawn from raw texts, without con- sidering any complicated language features. Our ex- periment shows promising results of word emotion prediction, which outperforms the traditional parsing methods such as the Hidden Markov Model and the Conditional Random Fields(CRFs) on raw text. We also explore the topic distribution by examining the emotion topic variation in an emotion topic diagram. 展开更多
关键词 word emotion classification complex e-motion emotion intensity prediction emotion-topicvariation hierarchical Bayesian network
在线阅读 下载PDF
Simplification and improvement of prediction model for elastic modulus of particulate reinforced metal matrix composite
3
作者 王文明 《Journal of Chongqing University》 CAS 2006年第4期187-192,共6页
In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape... In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law, the model can predict the engineering elastic constant of a composite effectively. 展开更多
关键词 particulate reinforced metal matrix composite elastic modulus prediction model five-zone model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部