期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于混合SVM方法的蛋白质二级结构预测算法 被引量:4
1
作者 隋海峰 曲武 +1 位作者 钱文彬 杨炳儒 《计算机科学》 CSCD 北大核心 2011年第10期169-173,188,共6页
预测蛋白质二级结构,是当今生物信息学中一个难以解决的问题。由于预测蛋白质二级结构的精度在蛋白质结构研究中起到非常重要的作用,因此在基于KDTICM理论基础上,提出一种基于混合SVM方法的蛋白质二级结构预测算法。该算法有效地利用蛋... 预测蛋白质二级结构,是当今生物信息学中一个难以解决的问题。由于预测蛋白质二级结构的精度在蛋白质结构研究中起到非常重要的作用,因此在基于KDTICM理论基础上,提出一种基于混合SVM方法的蛋白质二级结构预测算法。该算法有效地利用蛋白质的物化属性和PSI-SEARCH生成的位置特异性打分矩阵作为双层SVM的输入,从而大大地提高了蛋白质二级结构预测的精度。实验比较分析表明,新算法的预测精度和普适性明显优于目前其他典型的预测方法。 展开更多
关键词 蛋白质二级结构预测 混合SVM方法 复合金字塔模型
在线阅读 下载PDF
基于蛋白质二级序列的关联多分类算法 被引量:1
2
作者 杨炳儒 周谆 侯伟 《系统工程与电子技术》 EI CSCD 北大核心 2010年第6期1318-1324,共7页
蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in d... 蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in database*,KDD*)模型为基础,提出一种基于结构序列的多分类算法——SAC(structuralassociation classification),可以有效地解决蛋白质二级结构预测问题。该算法借助设定支持度阈值的精化知识库的方法,其预测准确率能够超过85%。以该算法为核心,构建了一个蛋白质二级预测模型——复合金字塔模型。实验证明,在RS126、CB513I、LP数据集上的预测准确率均超过80%,超过目前已知的国际主流水平。 展开更多
关键词 关联分类 蛋白质二级结构预测 数据库中的知识发现 复合金字塔模型
在线阅读 下载PDF
Interaction behavior recognition from multiple views 被引量:2
3
作者 XIA Li-min GUO Wei-ting WANG Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期101-113,共13页
This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature repr... This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words(BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition. 展开更多
关键词 local self-similarity descriptors graph shared multi-task learning composite interactive feature temporal-pyramid bag of words
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部