期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征金字塔网络的TFDS图像去噪算法
1
作者 陈佳伟 岳建海 +1 位作者 周航 胡准庆 《铁道学报》 2025年第9期104-118,共15页
为进一步提高深度学习方法对货车运行故障动态图像检测系统(TFDS)图像去噪效果和边缘保持性,提出一种基于特征金字塔网络的图像去噪算法。该算法构建了一种由CBAM-Wnet特征提取网络、内容增强器和转换器三部分构成的新型图像去噪网络模... 为进一步提高深度学习方法对货车运行故障动态图像检测系统(TFDS)图像去噪效果和边缘保持性,提出一种基于特征金字塔网络的图像去噪算法。该算法构建了一种由CBAM-Wnet特征提取网络、内容增强器和转换器三部分构成的新型图像去噪网络模型。采用特征金字塔网络与U-Net衍生网络,以增强模型的多尺度特征提取能力;利用内容增强器、卷积注意力机制(CBAM),以及转换器提高模型的边缘感知能力;构建新型复合函数,降低网络过拟合风险,同时提高其去噪性能。试验结果表明:与主流算法相比,所提算法在去噪效果和边缘保持性方面均表现更佳;在高斯噪声条件下的TFDS图像去噪任务中,峰值信噪比(PSNR)相较于其他算法平均提升0.86 dB,提升幅度为2.40%;结构相似(SSIM)性指数平均提升1.95%;在模拟真实世界噪声的TFDS图像去噪任务中,相较于其他算法,该算法的PSNR平均提升0.68 dB,提升幅度1.78%;SSIM平均提升1.28%。 展开更多
关键词 图像降噪 货车运行故障动态图像检测系统 特征金字塔网络 复合金字塔损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部