期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于复合深度Gauss回归网络的汽车ORS优化设计
1
作者 王文捷 孙奕 +1 位作者 刘钊 朱平 《汽车安全与节能学报》 北大核心 2025年第3期367-375,共9页
为了提升汽车乘员约束系统(ORS)的安全性能和开发效率,提出了一种基于复合深度Gauss回归网络的汽车ORS优化设计方法。面向假人伤害值预测,将神经网络架构与Gauss过程回归相结合,提出了改进的复合深度Gauss回归网络作为预测模型;根据假... 为了提升汽车乘员约束系统(ORS)的安全性能和开发效率,提出了一种基于复合深度Gauss回归网络的汽车ORS优化设计方法。面向假人伤害值预测,将神经网络架构与Gauss过程回归相结合,提出了改进的复合深度Gauss回归网络作为预测模型;根据假人伤害预测值构建优化目标函数,基于多组群乌鸦搜索算法开展ORS参数优化;使用工程仿真数据,验证方法的有效性。结果表明:相较于原始方案,本设计方案的假人伤害最高降低了30.77%,平均降低12.11%;用本方法可以预测假人多个部位的伤害值,并获取高质量的ORS设计方案。 展开更多
关键词 汽车碰撞 乘员约束系统(ORS) 假人伤害 数据驱动 复合深度gauss回归网络 多组群乌鸦搜索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部