期刊文献+
共找到1,998篇文章
< 1 2 100 >
每页显示 20 50 100
基于优化的支持向量机模型评估和预测社会-生态系统脆弱性——以陕南秦巴山区为例 被引量:1
1
作者 李润阳 陈佳 +3 位作者 杨新军 尹莎 徐俐 白玉玲 《生态学报》 北大核心 2025年第5期2281-2297,共17页
随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模... 随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模型,将SESV分解为暴露风险、敏感性和适应能力三个维度共48个指标,定量评估了2000—2020年陕南秦巴山区SESV及其各维度的空间分布特征,随后构建支持向量机模型,通过对比三种算法优化后的模型精度选取最优模型并预测2020—2050年陕南秦巴山区SESV及其各维度的时空分布和演化特征。结果显示:①陕南秦巴山区的SESV整体处于中低脆弱水平,在空间上呈现“中部高,南北低”的分布格局。②粒子群算法优化的支持向量机模型的准确性最优,且选取合适的训练样本数量能进一步改善预测性能。③预测结果显示,陕南秦巴山区SESV得到了显著降低,社会⁃生态系朝着良好态势发展。其中,暴露风险与SESV具有趋同性且地区间的差异变小,敏感性与适应能力维度均呈现“西高东低”的态势但地区间的差异并未缓解。研究旨在通过中国山区典型案例分析为SESV评估与预测提供参考依据。 展开更多
关键词 社会⁃生态系统 脆弱性 支持向量模型 优化算法 陕南秦巴山区
在线阅读 下载PDF
基于优化支持向量回归机的气浮单元水质预测模型
2
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
基于模糊支持向量机的光纤通信网络攻击辨识数学模型
3
作者 温新苗 黄红芳 董晓菲 《激光杂志》 北大核心 2025年第7期161-167,共7页
面对网络攻击手段的不断演变和升级,传统识别方法难以应对日益复杂的网络安全问题,导致经常出现错误辨识的现象。针对上述问题,研究一种基于模糊支持向量机的光纤通信网络攻击辨识数学模型。对光纤通信信号实施去噪处理,分离噪声和源信... 面对网络攻击手段的不断演变和升级,传统识别方法难以应对日益复杂的网络安全问题,导致经常出现错误辨识的现象。针对上述问题,研究一种基于模糊支持向量机的光纤通信网络攻击辨识数学模型。对光纤通信信号实施去噪处理,分离噪声和源信号。从源信号中提取占空比特征、频率中心特征和能量占比特征。以特征来描述训练样本,通过训练样本训练模糊支持向量机,构建光纤通信网络攻击辨识数学模型。结果表明,应用该模型后,不同类别的类内密度更高,均达到0.8以上,说明模型更容易将样本正确分类,从而减少了类内误分类的可能性,且该模型得到的辨识结果与真实值的一致性非常高。 展开更多
关键词 模糊支持向量 光纤通信网络 攻击类型 特征提取 辨识数学模型
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
4
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小二乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于支持向量机的钢-混结合段疲劳性能研究
5
作者 王海波 王鸿燊 王文轩 《中南大学学报(自然科学版)》 北大核心 2025年第5期1874-1885,共12页
为了更准确地预测和评估钢-混结合段的疲劳性能,设计了缩尺比为1:2的关键格室构件进行设计寿命期内疲劳验证试验,用试验结果验证有限元模型的准确性。采用ABAQUS有限元软件对各种参数下的疲劳应力幅进行计算,结合Eurocode 3中的相关规... 为了更准确地预测和评估钢-混结合段的疲劳性能,设计了缩尺比为1:2的关键格室构件进行设计寿命期内疲劳验证试验,用试验结果验证有限元模型的准确性。采用ABAQUS有限元软件对各种参数下的疲劳应力幅进行计算,结合Eurocode 3中的相关规定预测钢-混结合段的疲劳性能。另外,选择支持向量机对多参数下的钢-混结合段疲劳性能进行评估。采用交叉验证等方法,调优支持向量机的核函数系数G和正则化参数C,以确保模型的最佳性能。研究结果表明:疲劳寿命预测结果准确率达98.78%,该方法为钢-混结合段的疲劳性能研究提供了一种新的、可靠的分析方法,可为工程实际应用提供参考。 展开更多
关键词 钢-混结合段 疲劳寿命 支持向量 模型试验
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:6
6
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量 软测量模型
在线阅读 下载PDF
基于Transformer与单分类支持向量机的窃电时间识别方法
7
作者 陈静 王铭海 +5 位作者 刘煜寒 江灏 缪希仁 林蔚青 郑垂锭 赵睿 《电网技术》 北大核心 2025年第5期2109-2118,I0093,共11页
窃电量的追回是窃电检测的最终目的,准确的窃电时间识别是进行窃电量精确估算的重要依据。然而,现有窃电检测方法侧重于识别窃电行为,对窃电时间缺乏深入分析,亟需研究基于窃电用户自身计量数据的窃电时间识别模型,为窃电量的估算提供... 窃电量的追回是窃电检测的最终目的,准确的窃电时间识别是进行窃电量精确估算的重要依据。然而,现有窃电检测方法侧重于识别窃电行为,对窃电时间缺乏深入分析,亟需研究基于窃电用户自身计量数据的窃电时间识别模型,为窃电量的估算提供依据。针对窃电时间识别问题,提出一种基于Transformer与单分类支持向量机(one-class support vector machine,OCSVM)的半监督窃电数据分类方法。首先,对用户负荷数据按日进行切割,将窃电时间识别问题转化为窃电日负荷数据判别问题;然后,使用Transformer作为重构模型学习用户的正常用电模式与规律,以重构出基于用户日负荷数据的重构值;最后,将构造重构误差曲线作为OCSVM的输入,构造正常用电行为的决策边界,进而判别出窃电数据,以实现窃电时间识别。根据南方某省智能电表用户数据进行算例分析,验证了该方法的可行性和有效性,实验结果表明该方法具有较好的灵敏性和鲁棒性。 展开更多
关键词 窃电 窃电时间识别 半监督学习 Transformer模型 单分类支持向量
在线阅读 下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
8
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
在线阅读 下载PDF
基于改进自适应最小二乘支持向量机的飞灰含碳量软测量方法
9
作者 郭文康 莫正阳 李益国 《动力工程学报》 北大核心 2025年第7期1082-1090,共9页
飞灰含碳量是实现锅炉效率在线测量的重要参数之一,然而目前的飞灰含碳量测量装置存在测量周期长和故障率高等缺点。为此,通过改进模型更新方法提出一种新的改进自适应最小二乘支持向量机(IALSSVM)算法,并且将其用于建立某660 MW燃煤锅... 飞灰含碳量是实现锅炉效率在线测量的重要参数之一,然而目前的飞灰含碳量测量装置存在测量周期长和故障率高等缺点。为此,通过改进模型更新方法提出一种新的改进自适应最小二乘支持向量机(IALSSVM)算法,并且将其用于建立某660 MW燃煤锅炉飞灰含碳量的动态软测量模型,其中采用皮尔逊相关性分析筛选出重要变量,利用核主成分分析(KPCA)法融合重要变量信息。仿真测试结果表明:该软测量模型在测试集上的平均绝对预测误差(MAE)、平均绝对百分比误差(MAPE)分别为0.171%和19.814%,拟合优度(R~2)为0.843,具有较高的精度和稳定性。另外,新的模型更新方法在计算速度上相比于传统方法提升30%左右,对促进该模型的在线应用和实现锅炉闭环燃烧优化具有重要作用。 展开更多
关键词 飞灰含碳量 软测量模型 支持向量 特征降维 在线更新
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:1
10
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小二乘支持向量 相关性模型
在线阅读 下载PDF
基于随机森林和支持向量机的Mo-Nb合金本构模型 被引量:2
11
作者 黄文杰 王克鲁 +5 位作者 鲁世强 钟明君 李鑫 曾权 周潼 汪增强 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第2期453-461,共9页
在变形温度为900~1200℃、应变速率为0.01~10 s^(-1)条件下,采用Gleeble-3800型热模拟试验机对Mo-Nb合金进行等温恒应变速率压缩实验,研究Mo-Nb合金的流动应力行为,并采用随机森林和支持向量机的方法建立该合金的本构关系模型。结果表明... 在变形温度为900~1200℃、应变速率为0.01~10 s^(-1)条件下,采用Gleeble-3800型热模拟试验机对Mo-Nb合金进行等温恒应变速率压缩实验,研究Mo-Nb合金的流动应力行为,并采用随机森林和支持向量机的方法建立该合金的本构关系模型。结果表明:Mo-Nb合金是负温度和正应变速率敏感型材料,其流动应力随变形温度升高和应变速率降低而减小;随机森林和支持向量机本构关系模型的训练样本的相关系数和平均相对误差分别为0.989、0.998及2.41%、0.94%,测试样本的相关系数和平均相对误差分别为0.991、0.996及2.47%、1.4%,二者都具有较好的预测能力;支持向量机本构关系模型精度高于随机森林,因此,支持向量机本构关系模型更适于预测Mo-Nb合金的流动应力。 展开更多
关键词 Mo-Nb合金 本构模型 森林 支持向量
在线阅读 下载PDF
基于逻辑回归和支持向量机耦合模型的滑坡易发性分析 被引量:10
12
作者 李成林 刘严松 +3 位作者 赖思翰 王地 何星慧 刘琦 《自然灾害学报》 CSCD 北大核心 2024年第2期75-86,共12页
滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机... 滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机(logistic regression-support vector machine,LR-SVM)耦合模型,搭建滑坡易发性评价体系,完成旺苍县滑坡易发性评价并进行模型精度比较。研究结果表明:逻辑回归-支持向量机耦合模型的评价指标结果均优于逻辑回归模型,易发性分区结果更合理,预测精度更高;在低易发区选取非滑坡点为提高滑坡易发性评价性能作用明显;研究区内道路、高程和NDVI对滑坡发育的敏感性较强;高易发区主要分布于低海拔的水系和道路两侧。 展开更多
关键词 滑坡易发性评价 逻辑回归 支持向量 耦合模型 旺苍县
在线阅读 下载PDF
中国冬季降水的支持向量机预测模型研究 被引量:1
13
作者 姚晨伟 杨子寒 +3 位作者 白慧敏 吴银忠 龚志强 封国林 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第10期3670-3685,共16页
我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学... 我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学习方法提高中国冬季降水的预测准确率.基于NCEP_CFS,ECMWF_SYSTEM,BCC_CSM等五个模式数据以及站点数据,建立针对冬季降水的SVM集成预测模型,并与单个模式和等权集合平均模型(AVE)加以对比.SVM模型因其强泛化和处理非线性问题的能力,在中国冬季降水预测中表现良好.研究表明:(1)SVM模型较单个模式及AVE模型的预测准确性与稳定性得到大幅提升,SVM模型的PS评分和PCS评分显著高于单个成员模式的结果,最大分别提高了8.0(12.6%)和3.9(7.4%),较AVE模型则最大分别提高了5.4(8.2%)和2.1(3.8%),预报技巧的提高在观测资料相对缺乏的西南和西北地区尤为明显.(2)从均方根误差和时间相关系数的空间分布上来看,SVM模型对其成员模式在西藏地区、西南地区、华东及华南地区误差较大的情况改善明显,误差最大降低了259(90.9%),预报技巧最大提高了1.13.(3)独立样本检验中,SVM模型的PS评分和PCS评分显著高于单个模式和AVE模型,最大提高了10.79(20.3%)和11.39(27.3%).因此,SVM模型的构建,将有助于进一步提高中国冬季降水预测的准确性和稳定性,为气象防灾减灾和气候资源开发利用等提供重要技术支撑. 展开更多
关键词 降水 支持向量 等权集合平均模型 集成预测
在线阅读 下载PDF
混沌-支持向量机模型及其在地下水动态预报中的应用 被引量:4
14
作者 胡国杰 魏晓妹 +3 位作者 蔡明科 许义和 杨婷 黄朝轩 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2011年第2期229-234,共6页
【目的】建立混沌时间序列的支持向量机预报模型,为地下水动态提供新的可行的预报方法。【方法】以重构相空间理论为基础,探讨了混沌时间序列的支持向量机预报模型的建模思路、特点及参数的选取,借助G-P算法、C-C方法和Wolf方法,计算了... 【目的】建立混沌时间序列的支持向量机预报模型,为地下水动态提供新的可行的预报方法。【方法】以重构相空间理论为基础,探讨了混沌时间序列的支持向量机预报模型的建模思路、特点及参数的选取,借助G-P算法、C-C方法和Wolf方法,计算了武威盆地3眼观测井地下水位埋深序列的Lyapunov指数,并利用自适应方法对支持向量机的参数进行了选择;基于高斯径向基核函数,建立了混沌时间序列的支持向量机预报模型。【结果】武威盆地地下水位埋深序列的Lyapunov指数均大于0,表明该时间序列具有混沌特性;所建立的混沌-支持向量机模型可以用于武威盆地地下水位埋深预报,经过检验,武威盆地3眼观测井的预报精度分别为0.98,0.92和0.86,表明建立模型预报精度较为理想。【结论】建立了混沌-支持向量机模型,该模型可用于地下水位埋深动态预报。 展开更多
关键词 地下水动态 混沌 时间序列 相空间重构 LYAPUNOV指数 支持向量
在线阅读 下载PDF
基于多主元特征与支持向量机的动态过程质量异常监控模型 被引量:10
15
作者 刘玉敏 张帅 《计算机集成制造系统》 EI CSCD 北大核心 2018年第3期703-710,共8页
为简化多支持向量机识别模型的计算复杂度、提高动态过程质量异常模式的识别精度,提出一种基于多主元特征与支持向量机相结合的动态过程异常监控模型。利用主元分析方法对动态数据进行特征提取,将所提取的不同主元特征作为支持向量机分... 为简化多支持向量机识别模型的计算复杂度、提高动态过程质量异常模式的识别精度,提出一种基于多主元特征与支持向量机相结合的动态过程异常监控模型。利用主元分析方法对动态数据进行特征提取,将所提取的不同主元特征作为支持向量机分类器的输入对模型进行训练。将识别效率高的主元特征对应的转换矩阵与多支持向量机相结合,构建了基于多主元特征的多支持向量机识别模型,对质量异常模式进行识别。仿真实验表明,所提基于多主元分析支持向量机识别模型的识别精度比传统基于主元特征或其他特征提取方法的识别模型有显著提高,且训练所需时间大大减少。 展开更多
关键词 动态过程 质量异常模式 多主元特征 支持向量
在线阅读 下载PDF
基于支持向量机的储粮仓壁动态侧压力预测模型 被引量:1
16
作者 徐志军 刘婷婷 +1 位作者 李建平 原方 《农机化研究》 北大核心 2022年第5期9-16,共8页
影响筒仓动态侧压力的影响因素十分复杂,如何全面考虑影响因素,高效、简单地预测筒仓动态侧压力是重要问题。针对此问题,尝试提出了基于支持向量机的预测模型。首先,将影响因素进行归一化处理,将归一化后的数据作为预测模型的输入向量,... 影响筒仓动态侧压力的影响因素十分复杂,如何全面考虑影响因素,高效、简单地预测筒仓动态侧压力是重要问题。针对此问题,尝试提出了基于支持向量机的预测模型。首先,将影响因素进行归一化处理,将归一化后的数据作为预测模型的输入向量,筒仓动态侧压力作为预测模型的输出向量;其次,以400组PFC模拟数据作为训练样本,运用交叉验证和网格搜索法寻优获得最优支持向量机参数,最终建立基于SVM的筒仓动态侧压力预测模型,并对105组PFC模拟数据进行筒仓动态侧压力预测。结果表明:SVM预测模型的均方误差MSE小于0.0005,相关系数R;大于0.98,模型具有较高的准确率和较好的泛化性能。将模型试验、数值模拟、公式计算与预测数据进行对比分析,结果拟合良好;利用该模型验证筒仓动态侧压力随着相关参数的变化趋势,结果与前人研究结果相一致。该预测模型与传统方法相结合对筒仓动态侧压力进行研究可行性较高,可为筒仓动态侧压力预测、影响因素研究提供一种新的方法。 展开更多
关键词 筒仓 动态侧压力 支持向量 网格搜索 预测模型 储粮
在线阅读 下载PDF
最小二乘支持向量机与Kalman滤波耦合的瓦斯涌出量动态预测模型 被引量:3
17
作者 付华 訾海 《计算机应用》 CSCD 北大核心 2015年第1期289-293,共5页
针对瓦斯涌出量的多影响因素预测问题,提出一种最小二乘支持向量机(LS-SVM)回归算法与卡尔曼滤波耦合的动态预测方法。该方法依据预测残差方差比检验策略确定自适应的动态训练样本集以取代固定的训练样本集。LS-SVM辨识网络对瓦斯涌出... 针对瓦斯涌出量的多影响因素预测问题,提出一种最小二乘支持向量机(LS-SVM)回归算法与卡尔曼滤波耦合的动态预测方法。该方法依据预测残差方差比检验策略确定自适应的动态训练样本集以取代固定的训练样本集。LS-SVM辨识网络对瓦斯涌出量的相关因素进行非线性映射并提取出最佳维数的状态向量以建立基于卡尔曼滤波最优估计的瓦斯涌出量预测模型。利用矿井监测到的各项历史数据进行实验。结果表明,该模型的预测平均相对误差为2.17%,平均相对变动值ARV为0.008 873,相比单一的神经网络或支持向量机预测模型,具有更高的预测精度与更强的泛化能力。 展开更多
关键词 非线性 动态训练样本集 最小二乘支持向量 卡尔曼滤波 瓦斯涌出量
在线阅读 下载PDF
电力市场中扩展短期负荷预测的动态支持向量机模型研究 被引量:5
18
作者 刘达 康薇 《陕西电力》 2008年第8期6-9,共4页
日负荷预测并不利用最新获得的负荷和天气等信息及时更新预测模型输入,不能动态跟踪最新的负荷变化。扩展短期负荷预测利用最新获得的信息。预测当前时刻以后若干小时的未知负荷,可以明显提高预测精度。通过支持向量机建立动态预测模型... 日负荷预测并不利用最新获得的负荷和天气等信息及时更新预测模型输入,不能动态跟踪最新的负荷变化。扩展短期负荷预测利用最新获得的信息。预测当前时刻以后若干小时的未知负荷,可以明显提高预测精度。通过支持向量机建立动态预测模型,滚动引入最新获得的负荷相关信息,对当日未知的多点负荷分别利用不同模型进行滚动预测。研究实例表明该动态模型预测误差较一般短期预测降低1/3左右。 展开更多
关键词 支持向量 扩展短期负荷预测 动态预测
在线阅读 下载PDF
基于特征约简与改进支持向量机的动态过程质量异常识别方法
19
作者 刘莉 刘玉敏 赵哲耘 《运筹与管理》 CSSCI CSCD 北大核心 2024年第8期44-50,共7页
为了有效降低特征维数并提高动态过程异常模式的识别精度,提出基于特征约简与改进支持向量机的动态过程质量异常识别方法。本文首先提取能反映质量异常模式的16个统计特征与7个形状特征,再使用粗糙集(RS)约简特征集合以剔除冗余特征与... 为了有效降低特征维数并提高动态过程异常模式的识别精度,提出基于特征约简与改进支持向量机的动态过程质量异常识别方法。本文首先提取能反映质量异常模式的16个统计特征与7个形状特征,再使用粗糙集(RS)约简特征集合以剔除冗余特征与干扰特征。同时,使用遗传算法(GA)寻找支持向量机(SVM)的最优参数,并采用GA-SVM模型识别质量异常模式。仿真实验表明:粗糙集筛选后得到的12个特征具有较强区分动态过程是否出现异常状况的能力,遗传算法参数寻优后的支持向量机识别质量异常模式的精度明显高于其他同类型的模型,因此,本文提出的RS-GA-SVM模型具有良好的识别精度与稳健性,能够对动态过程进行有效监控。 展开更多
关键词 动态过程 质量异常模式 粗糙集 支持向量 遗传算法
在线阅读 下载PDF
基于频率比−支持向量机耦合模型的四川省喜德县滑坡易发性评价 被引量:1
20
作者 孙才 铁永波 +2 位作者 宁志杰 徐伟 熊小辉 《沉积与特提斯地质》 CAS CSCD 北大核心 2024年第3期547-559,共13页
针对滑坡易发性评价中因子分级基础数据与评价模型的选取问题,本文以滑坡灾害频发的四川省喜德县为研究区,采用斜坡单元为评价单元,通过对评价因子进行相关性分析,选取高程、坡度、曲率、NDVI、SPI、距水系距离、距道路距离、距断层距... 针对滑坡易发性评价中因子分级基础数据与评价模型的选取问题,本文以滑坡灾害频发的四川省喜德县为研究区,采用斜坡单元为评价单元,通过对评价因子进行相关性分析,选取高程、坡度、曲率、NDVI、SPI、距水系距离、距道路距离、距断层距离、斜坡结构、工程地质岩组、土地利用类型11个评价因子,分别对区域点属性和滑坡点属性两类基础数据采用自然断点法进行因子分级,代入频率比模型和频率比–支持向量机耦合模型来评价滑坡易发性,并使用受试者工作特征(ROC)曲线与典型斜坡来验证模型精度。结果显示:以滑坡点属性作为分类基础数据并运用耦合模型得到的评价精度最高,对应的曲线下面积(SAUC)值为0.752,能更好地预测滑坡易发性;模拟结果显示,研究区极高、高易发区面积占比分别为4.65%和23.73%,主要分布在地形起伏较大、断层发育、人类工程活动强烈的区域。相反,断层稀疏、人口分散的地区属于中、低易发区,其面积占比分别为44.20%和27.42%。结果将为喜德县及其类似地区滑坡易发性评价工作提供科学参考。 展开更多
关键词 滑坡易发性 因子分级 频率比模型 支持向量模型 耦合模型
在线阅读 下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部