The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the...The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the vibrations.Using the state-of-the-art three-dimensional coupled periodic finite element-boundary element(FE-BE) method,the dynamic track-tunnel-soil interaction model for metro line 15 was used to predict vibrations in the free field at a train speed of 80 km/h.Three types of tracks(direct fixation fasteners,floating slab track and floating ladder track) on the Beijing metro network were considered in the model. For each track,the acceleration response in the free field was obtained.The numerical results show that the influence of vibrations from underground trains on sensitive equipment depends on the track types.At frequencies above 10 Hz,the floating slab track with a natural frequency of 7 Hz can be effective to attenuate the vibrations.展开更多
A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decompose...A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.展开更多
基金Projects(50538010,50848046) supported by the National Natural Science Foundation of ChinaProject(BIL07/07) supported by the Research Council of K.U.Leuven and the National Natural Science Foundation of China
文摘The impact of vibrations due to underground trains on Beijing metro line 15 on sensitive equipment in the Institute of Microelectronics of Tsinghua University was discussed to propose a viable solution to mitigate the vibrations.Using the state-of-the-art three-dimensional coupled periodic finite element-boundary element(FE-BE) method,the dynamic track-tunnel-soil interaction model for metro line 15 was used to predict vibrations in the free field at a train speed of 80 km/h.Three types of tracks(direct fixation fasteners,floating slab track and floating ladder track) on the Beijing metro network were considered in the model. For each track,the acceleration response in the free field was obtained.The numerical results show that the influence of vibrations from underground trains on sensitive equipment depends on the track types.At frequencies above 10 Hz,the floating slab track with a natural frequency of 7 Hz can be effective to attenuate the vibrations.
基金Projects(51007047,51077087)supported by the National Natural Science Foundation of ChinaProject(2013CB228205)supported by the National Key Basic Research Program of China+1 种基金Project(20100131120039)supported by Higher Learning Doctor Discipline End Scientific Research Fund of the Ministry of Education Institution,ChinaProject(ZR2010EQ035)supported by the Natural Science Foundation of Shandong Province,China
文摘A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.