期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
“日本”的读法
1
作者 石珣 《日语知识》 2001年第5期19-19,共1页
「日本」这个国名是从什么时候开始的呢?关于这个问题,在学者中有各种各样的说法,但是却绐终没有一个定论.尽管如此,但是圣德太子(574-622年)时期遣隋的史书中即有「日出処ノ天子」,「東ノ天皇」这样的记载,而且从那以后就认为大化改新... 「日本」这个国名是从什么时候开始的呢?关于这个问题,在学者中有各种各样的说法,但是却绐终没有一个定论.尽管如此,但是圣德太子(574-622年)时期遣隋的史书中即有「日出処ノ天子」,「東ノ天皇」这样的记载,而且从那以后就认为大化改新时期似乎是「日本」这个国名初次制定的时期.为什么会有如此一说呢?是因为传说大化年间,送百济使节的诏书中写有「御宇日本天皇」这样的字样,不过除此之外,在「近江令①」「大宝令②」「養老令③」中,作为外交用语,使用了「日本」为国名,确实是经常可以看到的. 展开更多
关键词 “日本” 读法 读音 日语 语言 声音学
在线阅读 下载PDF
Study on Acoustic Modeling in a Mandarin Continuous Speech Recognition 被引量:1
2
作者 PENG Di LIU Gang GUO Jun 《Journal of China University of Mining and Technology》 EI 2007年第1期143-146,共4页
The design of acoustic models is of vital importance to build a reliable connection between acoustic wave-form and linguistic messages in terms of individual speech units. According to the characteristic of Chinese ph... The design of acoustic models is of vital importance to build a reliable connection between acoustic wave-form and linguistic messages in terms of individual speech units. According to the characteristic of Chinese phonemes, the base acoustic phoneme units set is decided and refined and a decision tree based state tying approach is explored. Since one of the advantages of top-down tying method is flexibility in maintaining a balance between model accuracy and complexity, relevant adjustments are conducted, such as the stopping criterion of decision tree node splitting, during which optimal thresholds are captured. Better results are achieved in improving acoustic modeling accuracy as well as minimizing the scale of the model to a trainable extent. 展开更多
关键词 acoustic model base acoustic phoneme units decision tree
在线阅读 下载PDF
Novel Active Learning Method for Speech Recognition 被引量:1
3
作者 Liu Gang Chen Wei Guo Jun 《China Communications》 SCIE CSCD 2010年第5期29-39,共11页
In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learni... In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learning (AL) is adopted for speech recognition, where only the most informative training samples are selected for manual annotation. In this paper, we propose a novel active learning method for Chinese acoustic modeling, the methods for initial training set selection based on Kullback-Leibler Divergence (KLD) and sample evaluation based on multi-level confusion networks are proposed and adopted in our active learning system, respectively. Our experiments show that our proposed method can achieve satisfying performances. 展开更多
关键词 active learning acoustic model speech recognition KLD confusion network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部