研究了一种新型的空速测量方法。通过引入大气声学中的有效声速概念,建立了稳定气流作用下声矢量传感器阵列的近场输出模型,模型的阵列流形矢量中包含了待估计的空速信息。在此基础上提出了一种基于多重信号分类(multiple signal classi...研究了一种新型的空速测量方法。通过引入大气声学中的有效声速概念,建立了稳定气流作用下声矢量传感器阵列的近场输出模型,模型的阵列流形矢量中包含了待估计的空速信息。在此基础上提出了一种基于多重信号分类(multiple signal classification,MUSIC)的空速估计(airspeed estimation,ASE)算法,该算法可用于对空速的高精度估计。为了降低计算复杂度,进一步提出了一种快速的空速估计(fast airspeed estimation,FASE)算法,该算法虽然在ASE的精度上不如MUSIC-ASE算法,但无需谱搜索,具有更强的实时性。最后,对算法的估计性能进行分析,推导了ASE的克拉美-罗界表达式。仿真实验验证了算法的有效性。展开更多
研究了声矢量传感器阵动目标角度跟踪问题,并提出了声矢量传感器阵中一种基于Kalman滤波和正交压缩近似投影子空间跟踪(Orthonormal projection approximation and subspace tracking of deflation,OPASTd)的波达方向(Direction of arri...研究了声矢量传感器阵动目标角度跟踪问题,并提出了声矢量传感器阵中一种基于Kalman滤波和正交压缩近似投影子空间跟踪(Orthonormal projection approximation and subspace tracking of deflation,OPASTd)的波达方向(Direction of arrival,DOA)跟踪算法。该算法通过OPASTd算法来进行DOA的跟踪,从而克服了PASTd算法由于在某些情况下振荡但不收敛进而压缩数据、在迭代更新中由特征向量的不准确性产生误差累积等原因引起破坏信号子空间正交性的缺陷。Kalman滤波和OPASTd相结合算法可在估计角度的同时进行数据关联,与传统的PASTd算法相比,角度跟踪性能更好。该算法的优越性均可在文中得到验证。展开更多
将声矢量传感器阵列参数估计问题与平行因子(Parallel factor,PARAFAC)模型相结合,提出了一种基于快速PARAFAC分解的二维波达方向(Direction of arrival,DOA)估计算法。该算法首先将接收信号构建为PARAFAC模型,然后在数据域对参数矩阵...将声矢量传感器阵列参数估计问题与平行因子(Parallel factor,PARAFAC)模型相结合,提出了一种基于快速PARAFAC分解的二维波达方向(Direction of arrival,DOA)估计算法。该算法首先将接收信号构建为PARAFAC模型,然后在数据域对参数矩阵进行初估计,最后利用PARAFAC分解获得信号二维DOA估计。该算法能够应用于任意结构的声矢量传感器阵列,同时能够得到和信源一一匹配的仰角和方位角估计。借助于参数矩阵的初始估计,所提算法收敛速度较快,其计算复杂度大大降低。该算法角度估计性能接近于PARAFAC算法,同时优于借助旋转不变性进行信号参数估计(Estimation of signal parameters via rotational invariance technique,ESPRIT)算法和传播算子(Propagator method,PM)算法。展开更多
针对传统压电型声矢量传感器无法兼顾小体积与高灵敏度的问题,利用MEMS电容加速度计作为拾振器,实现矢量传感器的小型化设计。首先采用机电类比分析的方法得到内置加速度计的刚硬球体的声致振动响应;然后进行硅微电容加速度计选型和参...针对传统压电型声矢量传感器无法兼顾小体积与高灵敏度的问题,利用MEMS电容加速度计作为拾振器,实现矢量传感器的小型化设计。首先采用机电类比分析的方法得到内置加速度计的刚硬球体的声致振动响应;然后进行硅微电容加速度计选型和参数分析、设定,并设计制作了一只二维球形矢量传感器样机;最后对样机进行了参数测试,结果表明两矢量通道均具有良好的方向性,声压灵敏度分别为?185 d B和-186 d B(1 k Hz,0 d B ref 1 V/μPa),通道间相位差与理论值保持一致,验证了利用MEMS电容加速度计设计矢量传感器的可行性。展开更多
针对声压传感器条件下,声呐成像的左右模糊问题;针对常规MIMO声呐成像算法分辨力受瑞利限的限制问题;针对压缩感知算法重构信号中的数值不稳定问题,本文利用声矢量传感器接收到的信号振速信息和声压信息,利用目标在空间域分布的稀疏性,...针对声压传感器条件下,声呐成像的左右模糊问题;针对常规MIMO声呐成像算法分辨力受瑞利限的限制问题;针对压缩感知算法重构信号中的数值不稳定问题,本文利用声矢量传感器接收到的信号振速信息和声压信息,利用目标在空间域分布的稀疏性,在压缩感知理论下,提出了基于声矢量传感器的二维坐标下降法(DCD)算法改进的正交匹配追踪(OMP)算法。仿真结果表明,提出的算法可以精准地估计出空间目标的方位;与传统的分布式MIMO成像算法反向投影(Back Projection,BP)相比,使用更少的实验数据,降低了运算的复杂度;当信噪比为10 d B的条件下,BP算法当主瓣级为0 d B时,在x,y,z轴最大的旁瓣级分别为–24.5 d B,–24.3 d B,–5.5 d B,而提出的算法可以获得一个稀疏解,且有效的避免左右模糊问题;避免重构信号中的矩阵求逆运算,数值不稳定得到了解决;并在信噪比为–5 d B以下时,定位精度高于声压OMP-DCD算法,具有更高的抗噪声能力和系统辨识能力。展开更多
文摘研究了声矢量传感器阵动目标角度跟踪问题,并提出了声矢量传感器阵中一种基于Kalman滤波和正交压缩近似投影子空间跟踪(Orthonormal projection approximation and subspace tracking of deflation,OPASTd)的波达方向(Direction of arrival,DOA)跟踪算法。该算法通过OPASTd算法来进行DOA的跟踪,从而克服了PASTd算法由于在某些情况下振荡但不收敛进而压缩数据、在迭代更新中由特征向量的不准确性产生误差累积等原因引起破坏信号子空间正交性的缺陷。Kalman滤波和OPASTd相结合算法可在估计角度的同时进行数据关联,与传统的PASTd算法相比,角度跟踪性能更好。该算法的优越性均可在文中得到验证。
文摘将声矢量传感器阵列参数估计问题与平行因子(Parallel factor,PARAFAC)模型相结合,提出了一种基于快速PARAFAC分解的二维波达方向(Direction of arrival,DOA)估计算法。该算法首先将接收信号构建为PARAFAC模型,然后在数据域对参数矩阵进行初估计,最后利用PARAFAC分解获得信号二维DOA估计。该算法能够应用于任意结构的声矢量传感器阵列,同时能够得到和信源一一匹配的仰角和方位角估计。借助于参数矩阵的初始估计,所提算法收敛速度较快,其计算复杂度大大降低。该算法角度估计性能接近于PARAFAC算法,同时优于借助旋转不变性进行信号参数估计(Estimation of signal parameters via rotational invariance technique,ESPRIT)算法和传播算子(Propagator method,PM)算法。
文摘针对传统压电型声矢量传感器无法兼顾小体积与高灵敏度的问题,利用MEMS电容加速度计作为拾振器,实现矢量传感器的小型化设计。首先采用机电类比分析的方法得到内置加速度计的刚硬球体的声致振动响应;然后进行硅微电容加速度计选型和参数分析、设定,并设计制作了一只二维球形矢量传感器样机;最后对样机进行了参数测试,结果表明两矢量通道均具有良好的方向性,声压灵敏度分别为?185 d B和-186 d B(1 k Hz,0 d B ref 1 V/μPa),通道间相位差与理论值保持一致,验证了利用MEMS电容加速度计设计矢量传感器的可行性。
文摘针对声压传感器条件下,声呐成像的左右模糊问题;针对常规MIMO声呐成像算法分辨力受瑞利限的限制问题;针对压缩感知算法重构信号中的数值不稳定问题,本文利用声矢量传感器接收到的信号振速信息和声压信息,利用目标在空间域分布的稀疏性,在压缩感知理论下,提出了基于声矢量传感器的二维坐标下降法(DCD)算法改进的正交匹配追踪(OMP)算法。仿真结果表明,提出的算法可以精准地估计出空间目标的方位;与传统的分布式MIMO成像算法反向投影(Back Projection,BP)相比,使用更少的实验数据,降低了运算的复杂度;当信噪比为10 d B的条件下,BP算法当主瓣级为0 d B时,在x,y,z轴最大的旁瓣级分别为–24.5 d B,–24.3 d B,–5.5 d B,而提出的算法可以获得一个稀疏解,且有效的避免左右模糊问题;避免重构信号中的矩阵求逆运算,数值不稳定得到了解决;并在信噪比为–5 d B以下时,定位精度高于声压OMP-DCD算法,具有更高的抗噪声能力和系统辨识能力。