Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at hig...Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.展开更多
We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synth...We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO_(2) laser.The prepared LPG samples were characterized by Raman spectroscopy and FTIR,which validated the formation of multilayer graphene containing sp2 hybridized C=C bonds.FE-SEM revealed three-dimensional(3D)sheet-like structures,while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm,corres-ponding to the(002)plane of graphene.Their electrochemical performance showed a remarkable areal specific capacitance(CA)of 51 mF cm^(−2)(170 F g^(-1))at 1 mA cm^(−2)(3.3 A g^(-1))in a three-electrode configuration with 1 mol L^(−1) KOH as the aqueous electrolyte.The LPG electrodes produced an energy density of~3.5μWh cm^(−2) and a power density of~350μW cm^(−2),demonstrating signific-ant energy storage ability.They also had an excellent cycling stability,retaining 87%of their specific capacitance after 3000 cycles at 1 mA/cm^(2).A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L^(−1) KOH electrolyte had a specific capacit-ance of 23 mF cm^(−2) and showed excellent retention after 10000 cycles,showing LPG’s potential for use in supercapacitors.展开更多
Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is adde...Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is added to the solution before the chemical reduction reaction occurs.Firstly,it is found that silver nanoplates have self-assembly phenomenon on the surface of graphene.Secondly,the Ag nano hexagonal platelets(AgNHPs)with small particle sizes(10 nm),narrow distribution and good dispersion are prepared.Especially,smaller sizes(10 nm)and narrower particle size distribution of AgNHPs particles can be easily controlled by using this process.Finally,the conductivity of the ink is excellent.For example,when the printed patterns were sintering at 150℃,the resistivity of the ink(GE:0.15 g/L)reached the minimum value of 2.2×10^-6 cm.And the resistivity value was 3.7×10^-6Ωcm,when it was sintered at 100℃ for 30 min.The conductive ink prepared can be used for the field of printing electronics as ink-jet printing ink.展开更多
Prussian blue(PB) was used as catalyst to improve the extent of graphitization of polyacrylonitrile(PAN)-based carbon fibers.PB was deposited on carbon fibers by anodic electrodeposition and the thickness of PB coatin...Prussian blue(PB) was used as catalyst to improve the extent of graphitization of polyacrylonitrile(PAN)-based carbon fibers.PB was deposited on carbon fibers by anodic electrodeposition and the thickness of PB coating(PB content) was controlled by adjusting the electrodeposition time.PAN-based carbon fibers with PB coating were heat-treated and the extent of graphitization was measured by X-ray diffractometry and Raman spectroscopy.The results indicate that the extent of graphitization of PAN-based carbon fibers is enhanced in the presence of the coating.When the PB-coated carbon fibers were heat-treated at 1 900 ℃,interlayer spacing(d002) and crystallite size(Lc) reach 0.336 8 and 21.2 nm respectively.Contrarily,the values of d002 and Lc are 0.341 4 and 7.4 nm respectively when the bare carbon fibers were heat-treated at 2 800 ℃.Compared with the bare carbon fibers,PB can make the heat treatment temperature(HTT) drop more than 500 ℃ in order to reach the same extent of graphitization.Furthermore,the research results show that PB content also has a certain influence on the extent of graphitization at the same HTT.展开更多
文摘Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.
文摘We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO_(2) laser.The prepared LPG samples were characterized by Raman spectroscopy and FTIR,which validated the formation of multilayer graphene containing sp2 hybridized C=C bonds.FE-SEM revealed three-dimensional(3D)sheet-like structures,while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm,corres-ponding to the(002)plane of graphene.Their electrochemical performance showed a remarkable areal specific capacitance(CA)of 51 mF cm^(−2)(170 F g^(-1))at 1 mA cm^(−2)(3.3 A g^(-1))in a three-electrode configuration with 1 mol L^(−1) KOH as the aqueous electrolyte.The LPG electrodes produced an energy density of~3.5μWh cm^(−2) and a power density of~350μW cm^(−2),demonstrating signific-ant energy storage ability.They also had an excellent cycling stability,retaining 87%of their specific capacitance after 3000 cycles at 1 mA/cm^(2).A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L^(−1) KOH electrolyte had a specific capacit-ance of 23 mF cm^(−2) and showed excellent retention after 10000 cycles,showing LPG’s potential for use in supercapacitors.
基金Project(2018GK4015)supported by the Hunan Provincial Strategic Emerging Industry Project,China
文摘Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is added to the solution before the chemical reduction reaction occurs.Firstly,it is found that silver nanoplates have self-assembly phenomenon on the surface of graphene.Secondly,the Ag nano hexagonal platelets(AgNHPs)with small particle sizes(10 nm),narrow distribution and good dispersion are prepared.Especially,smaller sizes(10 nm)and narrower particle size distribution of AgNHPs particles can be easily controlled by using this process.Finally,the conductivity of the ink is excellent.For example,when the printed patterns were sintering at 150℃,the resistivity of the ink(GE:0.15 g/L)reached the minimum value of 2.2×10^-6 cm.And the resistivity value was 3.7×10^-6Ωcm,when it was sintered at 100℃ for 30 min.The conductive ink prepared can be used for the field of printing electronics as ink-jet printing ink.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘Prussian blue(PB) was used as catalyst to improve the extent of graphitization of polyacrylonitrile(PAN)-based carbon fibers.PB was deposited on carbon fibers by anodic electrodeposition and the thickness of PB coating(PB content) was controlled by adjusting the electrodeposition time.PAN-based carbon fibers with PB coating were heat-treated and the extent of graphitization was measured by X-ray diffractometry and Raman spectroscopy.The results indicate that the extent of graphitization of PAN-based carbon fibers is enhanced in the presence of the coating.When the PB-coated carbon fibers were heat-treated at 1 900 ℃,interlayer spacing(d002) and crystallite size(Lc) reach 0.336 8 and 21.2 nm respectively.Contrarily,the values of d002 and Lc are 0.341 4 and 7.4 nm respectively when the bare carbon fibers were heat-treated at 2 800 ℃.Compared with the bare carbon fibers,PB can make the heat treatment temperature(HTT) drop more than 500 ℃ in order to reach the same extent of graphitization.Furthermore,the research results show that PB content also has a certain influence on the extent of graphitization at the same HTT.