期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Logsitic回归模型和自适应密度聚类算法的分行业负荷增长规律
被引量:
1
1
作者
朱涛
陈翔
+1 位作者
高强
孟庆楠
《电网与清洁能源》
2019年第5期20-28,共9页
电力企业营配大数据的持续积累为电力用户负荷发展规律的研究提供了良好的数据基础。传统分行业负荷特性研究方法在海量数据挖掘上存在一定局限性,且缺乏对用户负荷年度成长模式的研究。应用Logsitic回归模型自动识别电力用户的饱和水...
电力企业营配大数据的持续积累为电力用户负荷发展规律的研究提供了良好的数据基础。传统分行业负荷特性研究方法在海量数据挖掘上存在一定局限性,且缺乏对用户负荷年度成长模式的研究。应用Logsitic回归模型自动识别电力用户的饱和水平值和增长速度,形成3项用户增长特性参数。应用参数自适应的密度聚类算法,分不同行业、不同规模搜索典型用户,获取增长特性参数的典型值,形成分行业分容量的典型负荷成长曲线。所提方法能够识别电力用户的负荷成长模式,降低数据维度,具备较好的大数据处理分析效果。最后对某沿海城市3万个电力用户进行模型验证,结果表明所提方法识别度较高,经挖掘得到的分行业负荷发展规律对负荷预测、电网规划有较强的指导意义。
展开更多
关键词
Logsitic模型
负荷成长模式
增长特性参数
应用密度聚类算法
分行业负荷
增长
曲线
在线阅读
下载PDF
职称材料
题名
基于Logsitic回归模型和自适应密度聚类算法的分行业负荷增长规律
被引量:
1
1
作者
朱涛
陈翔
高强
孟庆楠
机构
国网浙江省电力有限公司台州供电公司
出处
《电网与清洁能源》
2019年第5期20-28,共9页
基金
国家电网公司科技项目(No.TZ-ZBGW17-003-0128)~~
文摘
电力企业营配大数据的持续积累为电力用户负荷发展规律的研究提供了良好的数据基础。传统分行业负荷特性研究方法在海量数据挖掘上存在一定局限性,且缺乏对用户负荷年度成长模式的研究。应用Logsitic回归模型自动识别电力用户的饱和水平值和增长速度,形成3项用户增长特性参数。应用参数自适应的密度聚类算法,分不同行业、不同规模搜索典型用户,获取增长特性参数的典型值,形成分行业分容量的典型负荷成长曲线。所提方法能够识别电力用户的负荷成长模式,降低数据维度,具备较好的大数据处理分析效果。最后对某沿海城市3万个电力用户进行模型验证,结果表明所提方法识别度较高,经挖掘得到的分行业负荷发展规律对负荷预测、电网规划有较强的指导意义。
关键词
Logsitic模型
负荷成长模式
增长特性参数
应用密度聚类算法
分行业负荷
增长
曲线
Keywords
Logsitic model
load growth mode
growth characteristic parameter
DBSCAN
load growth curve of the subindustry
分类号
TM72 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Logsitic回归模型和自适应密度聚类算法的分行业负荷增长规律
朱涛
陈翔
高强
孟庆楠
《电网与清洁能源》
2019
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部