期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种基于距离比值的支持向量机增量训练算法 被引量:8
1
作者 徐海龙 王晓丹 +2 位作者 史朝辉 华继学 权文 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2008年第4期29-33,共5页
由于支持向量机具有较好地学习性能和泛化能力,目前已经得到了广泛的应用。如何使支持向量机进行有效的增量学习是目前支持向量机应用中需要解决的问题。深入研究了支持向量分布特点,提出了一种新的支持向量机增量训练淘汰机制——距离... 由于支持向量机具有较好地学习性能和泛化能力,目前已经得到了广泛的应用。如何使支持向量机进行有效的增量学习是目前支持向量机应用中需要解决的问题。深入研究了支持向量分布特点,提出了一种新的支持向量机增量训练淘汰机制——距离比值算法。该算法根据遗忘规则,设定一个合适的参数,按距离比值法中的定义计算各个样本中心距离与其到最优分类面距离的比值,舍弃对后续训练影响不大的样本,即可对训练数据进行有效的淘汰。对标准数据集的实验结果表明,使用该方法进行增量训练在保证分类精度的同时,能有效地提高训练速度。 展开更多
关键词 支持向量机 增量训练 淘汰机制 边界矢量 距离比值算法
在线阅读 下载PDF
油藏动态分析场景大模型构建与初步应用 被引量:1
2
作者 潘焕泉 刘剑桥 +13 位作者 龚斌 朱艺亨 白军辉 黄虎 方政保 敬洪彬 刘琛 匡铁 兰玉波 王天智 谢添 程名哲 秦彬 沈榆将 《石油勘探与开发》 EI CAS CSCD 北大核心 2024年第5期1175-1182,共8页
针对目前油藏动态分析中井史数据检索与分析、连井剖面绘制、开发生产关键技术指标计算、油藏复杂问题的措施建议等方面的智能化需求,采用增量预训练、指令微调和功能子系统耦合3个步骤构建油藏动态分析场景大模型,提出了基于命名实体... 针对目前油藏动态分析中井史数据检索与分析、连井剖面绘制、开发生产关键技术指标计算、油藏复杂问题的措施建议等方面的智能化需求,采用增量预训练、指令微调和功能子系统耦合3个步骤构建油藏动态分析场景大模型,提出了基于命名实体识别技术、工具调用技术、Text-to-SQL(自然语言转换成结构化查询语言)技术微调的功能子系统及其高效耦合方法,将人工智能大模型运用到油藏动态分析领域。测试了特征提取模型、工具分类模型、数据检索模型、分析建议模型的准确性,结果表明这些模型在油藏动态分析的各个关键环节均展现出了良好的性能。最后以大庆油田PK3区块部分注采井组为例,测试验证了油藏动态分析场景大模型在辅助油藏工程师进行油藏动态分析方面具有的运用价值和潜力,为大模型在油藏动态分析中的运用提供了较好的技术支持。 展开更多
关键词 油藏动态分析 人工智能大模型 场景大模型 增量训练 指令微调 系统耦合 实体识别 工具调用
在线阅读 下载PDF
用于人机交互的静态手势识别系统 被引量:13
3
作者 刘江华 陈佳品 程君实 《红外与激光工程》 EI CSCD 北大核心 2002年第6期499-503,共5页
提出并实现一个用于人机交互的静态手势识别系统。基于皮肤颜色模型进行手势分割,并用傅里叶描述子描述轮廓。采用针对小样本特别有效且范化误差有界的支持向量机方法:最小二乘支持向量机(LS SVM)作为分类器。提出了LS SVM的增量训练方... 提出并实现一个用于人机交互的静态手势识别系统。基于皮肤颜色模型进行手势分割,并用傅里叶描述子描述轮廓。采用针对小样本特别有效且范化误差有界的支持向量机方法:最小二乘支持向量机(LS SVM)作为分类器。提出了LS SVM的增量训练方式,避免了费时的矩阵求逆操作。为实现多类手势识别,利用DAG(DirectedAcyclicGraph)将多个两类LS SVM结合起来。对26个字母手势进行识别,与多层感知器、径向基函数网络等方法比较,LS SVM的识别率最高,为93.62%。 展开更多
关键词 人机交互 手势识别 傅里叶描述子 最小二乘支持向量机 增量训练算法 多类分类
在线阅读 下载PDF
基于遗忘因子和LMBP神经网络的混合试验在线模型更新方法 被引量:13
4
作者 王燕华 吕静 吴京 《振动与冲击》 EI CSCD 北大核心 2020年第9期42-48,56,共8页
目前将神经网络应用于混合试验的在线模型更新是一个重要的研究方向,如何提高神经网络在线模型更新算法的自适应性、稳定性和抗噪声能力是一个关键问题,提出了一种基于遗忘因子和LMBP神经网络的混合试验在线模型更新方法,即每时步利用... 目前将神经网络应用于混合试验的在线模型更新是一个重要的研究方向,如何提高神经网络在线模型更新算法的自适应性、稳定性和抗噪声能力是一个关键问题,提出了一种基于遗忘因子和LMBP神经网络的混合试验在线模型更新方法,即每时步利用试验子结构的历史试验数据形成带有遗忘因子的动态窗口样本,并采用增量训练方式训练LMBP神经网络,同步预测具有相同本构模型的数值子结构的恢复力。对一个两自由度非线性结构进行模型更新混合试验数值模拟,数值子结构恢复力预测值的RMSD最终为0.0230。结果表明,基于遗忘因子和LMBP神经网络的混合试验在线模型更新方法具有良好的自适应性、稳定性和抗噪声能力。 展开更多
关键词 在线模型更新 混合试验 增量训练 LMBP神经网络 遗忘因子
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部