期刊文献+
共找到996篇文章
< 1 2 50 >
每页显示 20 50 100
增量式PID神经网络控制器和仿真
1
作者 姜长松 李幼德 李静 《噪声与振动控制》 CSCD 2012年第4期68-72,共5页
针对三档阻尼可控减振器的特点,利用神经网络理论,设计一种基于M×Q×3结构BP神经网络的PID神经网络控制器。该控制器可根据被控系统的运行状态,通过神经网络的自学习、加权系数调整,使神经网络输出PID控制器参数,从而达到较好... 针对三档阻尼可控减振器的特点,利用神经网络理论,设计一种基于M×Q×3结构BP神经网络的PID神经网络控制器。该控制器可根据被控系统的运行状态,通过神经网络的自学习、加权系数调整,使神经网络输出PID控制器参数,从而达到较好的控制效果。对被动悬架与可控悬架系统进行三种典型工况的仿真分析,验证本文所提控制算法的有效性。 展开更多
关键词 振动与波 半主动悬架 增量式pid神经网络 控制器 仿真
在线阅读 下载PDF
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制
2
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 RBF神经网络 pid控制 精度
在线阅读 下载PDF
基于卷积神经网络和模糊PID的掘进机截割控制系统研究 被引量:1
3
作者 李英娜 崔彦平 +2 位作者 安博烁 刘百健 靳建伟 《工矿自动化》 北大核心 2025年第1期61-70,137,共11页
针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策... 针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策略由CNN煤岩硬度动态感知模块和截割臂摆速模糊PID控制模块组成。提出一种有效的截割路径,使截割头沿规划路径从上至下进行煤岩截割,以提高断面完整性,减小掘进方向的误差。采用CNN煤岩硬度动态感知模块分析采集的截割电动机电流、截割臂振动加速度、回转油缸压力数据信息,以感知煤岩特性;采用截割臂摆速模糊PID控制模块对感知后的数据进行模糊化与解模糊化处理,输出相应控制参数信号;电液比例阀根据接收到的信号控制液压油的流量和压力,通过阀控液压缸控制截割臂摆速,实现截割臂摆速的自适应控制。现场实验结果表明:当掘进机截割较软介质与煤时,截割臂以高摆速工作;当掘进机截割复杂岩层时,摆速随截割信号的增大而降低,截割信号在0~1之间变动;当掘进机截割较硬岩层时,截割载荷信号接近1,截割臂的摆速降低至0。 展开更多
关键词 悬臂式掘进机 智能截割 截割臂摆速 截割路径 模糊pid控制 煤岩硬度动态感知 卷积神经网络
在线阅读 下载PDF
支气管镜机器人的IWOA-BP神经网络-PID控制
4
作者 陈浩 王亚刚 +3 位作者 白冲 胡珍丽 吴启标 田鑫驰 《控制工程》 北大核心 2025年第7期1207-1216,共10页
在支气管镜机器人控制中,传统比例积分微分(proportional integral differential,PID)控制的精度不足,反向传播(back propagation,BP)神经网络易陷入局部最优。针对此问题,提出了一种改进鲸鱼优化算法(improved whale optimization algo... 在支气管镜机器人控制中,传统比例积分微分(proportional integral differential,PID)控制的精度不足,反向传播(back propagation,BP)神经网络易陷入局部最优。针对此问题,提出了一种改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)优化的BP-PID控制方法。首先,IWOA在传统鲸鱼优化算法的基础上,引入非线性收敛因子动态平衡全局搜索能力和局部搜索精度,通过帐篷(tent)混沌映射优化种群分布,利用莱维(Lévy)飞行策略增强全局寻优,并结合贪婪选择机制维持种群多样性,为BP神经网络提供最优初始连接权重。然后,BP神经网络在输入层融合参考输入、系统输出和跟踪误差,通过反向传播动态调整PID控制参数。仿真结果表明,与PID控制、BP神经网络-PID控制及其改进方法相比,所提方法能够大幅度降低系统的超调量,缩短调节时间,使稳态误差趋近于零。该方法具有较高的控制精度和抗干扰性,可显著减少操作中机械振动和组织摩擦,提高支气管镜手术的安全性。 展开更多
关键词 支气管镜机器人 BP神经网络 主从控制 pid控制 位置跟踪
在线阅读 下载PDF
基于BP神经网络PID自适应控制的激振系统研究 被引量:5
5
作者 肖乾 葛一帆 +3 位作者 符远航 常运清 汪寒俊 宾浩翔 《机床与液压》 北大核心 2025年第1期52-57,共6页
针对跨座式单轨车辆滚动振动试验台激振系统的位置控制精度易受参数变化和外部干扰等因素的影响,提出基于BP神经网络PID自适应的控制策略。建立激振系统数学模型,并推导出其开环传递函数。基于Simulink搭建3-5-3结构的BP神经网络PID自... 针对跨座式单轨车辆滚动振动试验台激振系统的位置控制精度易受参数变化和外部干扰等因素的影响,提出基于BP神经网络PID自适应的控制策略。建立激振系统数学模型,并推导出其开环传递函数。基于Simulink搭建3-5-3结构的BP神经网络PID自适应控制器,并施加阶跃干扰信号以验证系统的抗干扰能力。仿真结果表明:与传统PID和模糊PID控制器相比,BP神经网络PID自适应控制下系统达到稳态所需时间分别快52%和50%,且超调量基本为0;在应对外界干扰时,该控制器能自动调整控制参数,系统以较快速度恢复至稳态,显著增强了系统的抗干扰能力,同时展现出良好的适应性和鲁棒性。 展开更多
关键词 激振系统 BP神经网络 模糊pid 学习速率
在线阅读 下载PDF
基于自适应神经网络补偿的四旋翼PID控制策略
6
作者 杜飞平 熊振宇 +1 位作者 廖飞 李婷 《兵工自动化》 北大核心 2025年第6期62-68,共7页
针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,... 针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,通过数学推导与仿真分析以消除系统稳态误差,同时提升跟踪精度。在内环姿态控制器设计中,采用自适应RBF神经网络对PID进行补偿性设计,经反复的算法优化与模型验证,构建出高效的控制器模型。基于所设计的四旋翼飞行器模型,结合所提控制策略进行仿真测试。实验结果表明:该方法能对系统所遭受的外部干扰进行高效自适应补偿,有效提升了系统的稳定性,表现出良好的控制能力。 展开更多
关键词 四旋翼飞行器 内外环控制 自适应pid RBF神经网络
在线阅读 下载PDF
基于模糊神经网络PID的煤矿掘进机俯仰控制研究 被引量:5
7
作者 毛清华 陈彦璋 +3 位作者 马骋 王川伟 张飞 柴建权 《工矿自动化》 CSCD 北大核心 2024年第8期135-143,共9页
目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出... 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。 展开更多
关键词 掘进机俯仰控制 俯仰角 模糊神经网络pid 液压系统 液压缸位移控制 支撑机构
在线阅读 下载PDF
基于BP神经网络的逆流式饲料冷却器控制方法
8
作者 周智智 刘彩玲 +2 位作者 王红英 王威 吴俊华 《饲料工业》 北大核心 2025年第12期9-17,共9页
针对目前逆流式饲料冷却器无法精准控制成品饲料水分和冷却时间的问题,提出了基于BP神经网络预测冷却时间的冷却器控制方法。文章提出了一种预测冷却时间的方法来同时控制成品饲料的水分和饲料冷却时间,并通过仿真试验验证了该方法的可... 针对目前逆流式饲料冷却器无法精准控制成品饲料水分和冷却时间的问题,提出了基于BP神经网络预测冷却时间的冷却器控制方法。文章提出了一种预测冷却时间的方法来同时控制成品饲料的水分和饲料冷却时间,并通过仿真试验验证了该方法的可行性。在饲料薄层干燥模型准确的前提下,风速可以在20 s之内达到稳定状态,并准确在目标时间达到目标水分。通过引入误差进行仿真,验证了该方法在有误差情况下的可行性。准确的饲料薄层干燥模型难以建立,使用BP神经网络代替饲料薄层干燥模型进行冷却时间预测。在仿真环境获取数据集,进行BP神经网络训练。训练完成的BP神经网络预测结果误差集中在-8~4 s,R>0.99。通过仿真验证,在目标时间小于2 100 s时误差接近零,在目标时间大于2 100 s时,误差增大,误差最大绝对值为4.48%。基于BP神经网络预测冷却时间的冷却器控制方法满足实际生产的需求,可以提高饲料冷却过程的自动化水平,保证饲料的质量和安全,提高企业效益。 展开更多
关键词 饲料 逆流式饲料冷却器 饲料干燥 pid BP神经网络
在线阅读 下载PDF
基于模糊神经网络的CFRP感应加热温度控制
9
作者 杨宁 付天宇 +1 位作者 赫彬 史学迁 《工程塑料应用》 北大核心 2025年第6期79-86,共8页
为了提高碳纤维复合材料(CFRP)感应加热过程中温度控制的精确性和抗干扰能力,提出了一种基于模糊神经网络PID的智能控制算法。针对CFRP感应加热系统中存在的非线性、大时滞性及抗干扰能力不足等问题,通过融合模糊逻辑的鲁棒推理能力与... 为了提高碳纤维复合材料(CFRP)感应加热过程中温度控制的精确性和抗干扰能力,提出了一种基于模糊神经网络PID的智能控制算法。针对CFRP感应加热系统中存在的非线性、大时滞性及抗干扰能力不足等问题,通过融合模糊逻辑的鲁棒推理能力与神经网络的自适应学习机制,设计了动态参数自整定控制器。首先,基于电磁-热耦合理论建立了CFRP感应加热系统的传递函数模型,并通过遗传算法对实验数据进行系统辨识。其次,构建了5层模糊神经网络架构(输入层、模糊化层、模糊规则层、神经网络层、反模糊化层),利用误差反向传播机制在线优化隶属度函数参数及模糊规则权重,实现PID参数的动态调整。在MATLAB/Simulink平台上进行仿真验证,结果表明,在无扰动条件下,模糊神经网络PID控制系统的超调量仅为2.4%,较传统PID(超调量19.4%)和模糊PID(超调量13.5%)分别降低87.6%和82.2%,调节时间为570 s,且系统震荡完全消除。在抗干扰测试中,加入阶跃扰动和正弦扰动后,模糊神经网络PID的恢复时间分别为600 s和620 s。实验证明,该方法通过动态优化模糊规则库和PID参数,显著提升了系统的控制精度和抗干扰能力,为解决CFRP感应加热工艺中的温度控制难题提供了有效方案。 展开更多
关键词 碳纤维 复合材料 电磁感应加热 pid控制 模糊神经网络控制
在线阅读 下载PDF
基于BP神经网络的六角编织机控制策略
10
作者 付睿云 周炯 吴垠舟 《毛纺科技》 北大核心 2025年第1期104-110,共7页
为提高六角编织机控制系统的抗干扰能力,研究六角编织机的编织原理,提出一种BP(Back Propagation)神经网络与PID相融的编织控制策略,设计多电动机并行同步控制的方案,借助Simulink工具搭建六角编织机控制系统的仿真模型。仿真结果表明:... 为提高六角编织机控制系统的抗干扰能力,研究六角编织机的编织原理,提出一种BP(Back Propagation)神经网络与PID相融的编织控制策略,设计多电动机并行同步控制的方案,借助Simulink工具搭建六角编织机控制系统的仿真模型。仿真结果表明:与传统PID控制相比,BP-PID控制策略峰值时间下降0.032 s,最大超调量缩减0.272%,调整时间缩短0.524 s。并在0.5 s引入干扰,BP-PID算法显出更快的响应速度、更小的超调量和更强抗干扰能力。借助实际的六角编织机,从单电动机卡顿率、单次编织卡顿率和产品合格率3个指标验证了BP-PID控制策略有效性,提高编织物产品合格率。 展开更多
关键词 六角编织机 步进旋转式 BP神经网络 pid自整定
在线阅读 下载PDF
基于反向传播神经网络PID的高功率微波炉温度控制 被引量:9
11
作者 王威 李少甫 +2 位作者 吴昊 蒋成 唐颖颖 《强激光与粒子束》 CAS CSCD 北大核心 2024年第1期55-61,共7页
针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水... 针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水为加热对象进行仿真对比与实验验证。首先,利用现有输入输出实验数据,建立工业微波炉温度控制模型;其次,运用MATLAB/SIMULINK搭建高功率工业微波炉温度控制系统并进行仿真对比实验;最后,实验验证BPNNPID控制方法在加热5 kg自来水时工业微波炉的温度控制性能,实验结果表明,较常规PID、模糊PID控制,该方法在微波加热过程中对媒质温度控制超调更小且未发生明显温度振荡,有效改善了高功率工业微波炉工作时的系统温度稳定性,有助于提高产品质量和安全性能。 展开更多
关键词 高功率 微波加热 反向传播神经网络 pid 温度控制
在线阅读 下载PDF
基于BP神经网络的Smith-Fuzzy-PID算法在阀门定位中的应用研究 被引量:2
12
作者 谢涛 周邵萍 +1 位作者 王佳硕 裴梓敬 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期770-778,共9页
为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。... 为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。 展开更多
关键词 气动调节阀 Smith预估 模糊控制 BP神经网络 pid控制
在线阅读 下载PDF
基于模糊神经网络的氢液化氦气压力PID控制 被引量:2
13
作者 李安琪 秦可欣 +1 位作者 杨思锋 兰玉岐 《低温工程》 CAS CSCD 北大核心 2024年第2期92-98,共7页
为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比... 为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比传统PID控制或模糊PID控制,采用模糊神经网络PID控制的系统动态性能显著改善,使得氢液化装置的氦气压力调节更加稳定可靠。 展开更多
关键词 氦气压力调节系统 模糊神经网络 pid控制 压力控制
在线阅读 下载PDF
基于RBF神经网络整定PID的电液比例系统位置控制研究 被引量:3
14
作者 陈翰文 徐巧玉 +1 位作者 徐恺 张正 《机电工程》 CAS 北大核心 2024年第3期371-381,共11页
针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Sim... 针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Simulink搭建了系统闭环控制模型,通过不断更新RBF网络模型并修正PID参数,实现了基于RBF神经网络整定PID的电液比例系统位置控制目的;结合AMESim搭建的电液比例系统模型和Simulink下搭建的控制器进行了联合仿真;最后,基于凿岩台车机械臂实验平台,进行了电液比例系统位置控制实验。仿真结果表明:在受到外部干扰的情况下,RBF神经网络整定PID控制系统能够在0.3 s内控制活塞杆重新运行至目标位置,平均响应时间为1.5 s,位置精度误差不超过5 mm。实验结果表明:与常规PID控制方法相比,RBF神经网络整定PID控制活塞杆位置精度误差降低了75%,位置精度误差在工程实际要求的10 mm范围以内,因此,RBF神经网络整定PID算法可以有效提高电液比例系统的位置控制精度,满足凿岩机械臂实际工作中对电液比例系统位置精度的控制要求。 展开更多
关键词 凿岩机械臂 径向基函数神经网络整定pid 电液比例系统位置控制精度 联合仿真 MATLAB/SIMULINK AMESIM
在线阅读 下载PDF
永磁同步电机BP神经网络 智能PID滑模观测矢量控制算法 被引量:3
15
作者 郑瑞 张继祥 +2 位作者 董学松 刘永臻 沈洪令 《探测与控制学报》 CSCD 北大核心 2024年第5期124-131,共8页
针对永磁同步电机(PMSM)转速超调量大、转子位置检测精度低等问题,提出一种BP神经网络智能PID滑模观测器控制策略,将BP神经网络与传统PID控制相结合,利用BP神经网络实现对PID增益的在线调节,实现对永磁同步电机启动、突加负载干扰时稳... 针对永磁同步电机(PMSM)转速超调量大、转子位置检测精度低等问题,提出一种BP神经网络智能PID滑模观测器控制策略,将BP神经网络与传统PID控制相结合,利用BP神经网络实现对PID增益的在线调节,实现对永磁同步电机启动、突加负载干扰时稳定控制。采用无位置传感器控制,在永磁同步电机数学模型α-β坐标系中建立了滑模观测器结构,并且在Matlab/Simulink仿真系统中建立了仿真模型进行了仿真分析;从PID参数、电机转速等方面对BP神经网络智能PID控制的有效性进行了评估和仿真验证。通过仿真分析,采用滑模观测器检测转子实际位置与预期位置之间的误差小于7%,在0.3 s之后转子实际位置与预期位置完全重合。采用BP神经网络智能PID控制的永磁同步电机在启动时转速超调量减少了10.6%,在突加负载干扰时减少了1.4%。相比起传统PI控制,提出的BP神经网络智能PID控制能够有效提高PMSM的自适应性及抗干扰能力,并且显著减少了电机在启动及突加负载时超调量。 展开更多
关键词 永磁同步电机 BP神经网络 智能pid 滑模观测器 无位置传感器控制
在线阅读 下载PDF
足式机器人腿部关节改进单神经网络PID控制算法研究 被引量:4
16
作者 马程 蒋刚 +5 位作者 郝兴安 蒲虹云 陈清平 黄建军 徐文刚 黄璜 《机床与液压》 北大核心 2024年第3期60-66,共7页
为了满足液压足式机器人在复杂环境中实现精确、快速的腿部关节控制需求,把单神经网络PID能够实时调节参数的优点运用到足式机器人液压机械腿关节的控制中,在单神经网络PID的基础上增加机械腿关节的位置和速度控制算法,形成改进单神经网... 为了满足液压足式机器人在复杂环境中实现精确、快速的腿部关节控制需求,把单神经网络PID能够实时调节参数的优点运用到足式机器人液压机械腿关节的控制中,在单神经网络PID的基础上增加机械腿关节的位置和速度控制算法,形成改进单神经网络PID,实现了对神经元比例参数自调整、PID参数的自整定,能够较好地适应内、外参数的变化,增强了腿部关节的快速性、精确性。在Simulink中进行建模仿真以及在设计的以STM32为中央处理芯片的控制平台上进行实验测试,结果表明:改进单神经网络PID在足式液压机器人的腿部关节控制中具有响应速度快、超调量小、控制精度高、鲁棒性强等优点。 展开更多
关键词 电液伺服控制 足式机器人 改进单神经网络pid 参数自整定
在线阅读 下载PDF
基于神经网络-PID控制的水面无人艇控制系统设计 被引量:7
17
作者 敖邦乾 姜孝均 +2 位作者 董泽芳 刘小雍 陈孝玉 《控制工程》 CSCD 北大核心 2024年第7期1178-1184,共7页
为了提高在存在外界干扰和障碍物的环境下水面无人艇(unmannedsurfacevehicle,USV)控制系统的准确性和鲁棒性,提出了神经网络-PID控制算法。首先,使用人工势场法规划路径,得到一条从起点到终点的可行路径;然后,利用神经网络的自学习能... 为了提高在存在外界干扰和障碍物的环境下水面无人艇(unmannedsurfacevehicle,USV)控制系统的准确性和鲁棒性,提出了神经网络-PID控制算法。首先,使用人工势场法规划路径,得到一条从起点到终点的可行路径;然后,利用神经网络的自学习能力修正控制参数,实现控制参数的实时在线调节,精确调控USV沿着规划好的路径行进。在不同环境下进行仿真测试,仿真结果表明,与常规PID控制算法和模糊PID控制算法相比,所提算法降低了超调量和稳态误差,提高了控制系统的实时响应速度与USV的定位和航行精度。所提算法的抗干扰能力和控制精度优于与常规PID控制算法和模糊PID控制算法。 展开更多
关键词 USV 神经网络 pid控制 路径规划
在线阅读 下载PDF
基于增量式GHSOM神经网络模型的入侵检测研究 被引量:82
18
作者 杨雅辉 黄海珍 +2 位作者 沈晴霓 吴中海 张英 《计算机学报》 EI CSCD 北大核心 2014年第5期1216-1224,共9页
传统的网络入侵检测方法利用已知类型的攻击样本以离线的方式训练入侵检测模型,虽然对已知攻击类型具有较高的检测率,但是不能识别网络上新出现的攻击类型.这样的入侵检测系统存在着建立系统的速度慢、模型更新代价高等不足,面对规模日... 传统的网络入侵检测方法利用已知类型的攻击样本以离线的方式训练入侵检测模型,虽然对已知攻击类型具有较高的检测率,但是不能识别网络上新出现的攻击类型.这样的入侵检测系统存在着建立系统的速度慢、模型更新代价高等不足,面对规模日益扩大的网络和层出不穷的攻击,缺乏自适应性和扩展性,难以检测出网络上新出现的攻击类型.文中对GHSOM(Growing Hierarchical Self-Organizing Maps)神经网络模型进行了扩展,提出了一种基于增量式GHSOM神经网络模型的网络入侵检测方法,在不破坏已学习过的知识的同时,对在线检测过程中新出现的攻击类型进行增量式学习,实现对入侵检测模型的动态扩展.作者开发了一个基于增量式GHSOM神经网络模型的在线网络入侵检测原型系统,在局域网环境下开展了在线入侵检测实验.实验结果表明增量式GHSOM入侵检测方法具有动态自适应性,能够实现在线检测过程中对GHSOM模型的动态更新,而且对于网络上新出现的攻击类型,增量式GHSOM算法与传统GHSOM算法的检测率相当. 展开更多
关键词 增量式学习 生长型分层自组织映射 入侵检测 神经网络 信息安全 网络安全
在线阅读 下载PDF
基于自组织映射与概率神经网络的增量式学习算法 被引量:7
19
作者 戚湧 胡俊 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期1-6,共6页
为解决传统学习算法不能有效利用新可用数据这一不足,提出一种基于自组织映射(SOM)和概率神经网络(PNN)的增量式学习算法——增量式模块化自组织映射概率神经网络(IMSOMPNN)。使用模块化SOM对每类训练数据进行学习,以训练后SOM的原型向... 为解决传统学习算法不能有效利用新可用数据这一不足,提出一种基于自组织映射(SOM)和概率神经网络(PNN)的增量式学习算法——增量式模块化自组织映射概率神经网络(IMSOMPNN)。使用模块化SOM对每类训练数据进行学习,以训练后SOM的原型向量作为此类别的模式神经元来构建PNN。IMSOMPNN可以方便地实现对不同类型的新数据进行增量式学习,并且在进行增量学习时,不再需要利用到原始的训练数据,仅使用新的数据对已有模型进行局部调整;最后,IMSOMPNN还具有较强的抗噪能力。在UCI Landsat Satellite数据集上的实验验证了该文所述方法的有效性。 展开更多
关键词 自组织映射 概率神经网络 增量式学习 机器学习
在线阅读 下载PDF
基于模糊RBF神经网络PID的AUV姿态控制研究 被引量:2
20
作者 牛亮 党晓圆 +1 位作者 冯元 崔卫星 《传感器与微系统》 CSCD 北大核心 2024年第10期11-14,共4页
针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水... 针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水下复杂工况的问题。仿真结果表明:模糊RBF神经网络PID控制器在AUV姿态调节中表现出较传统模糊PID控制器更好的响应速度和抗干扰能力,有效改善了AUV姿态控制性能;经实际应用验证,控制器在复杂工况下可以快速收敛至期望姿态并维持稳定。 展开更多
关键词 自主水下航行器 运动控制 径向基函数神经网络 模糊pid 运动控制器
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部