The microwave absorbing characteristics of basic cobalt carbonate,cobalt oxide(Co3O4),and the mixture of basic cobalt carbonate and cobalt oxide were investigated by means of microwave cavity perturbation,their temper...The microwave absorbing characteristics of basic cobalt carbonate,cobalt oxide(Co3O4),and the mixture of basic cobalt carbonate and cobalt oxide were investigated by means of microwave cavity perturbation,their temperature increasing curves were measured,and their ability to absorb microwave energy was also assessed based on the temperature increasing behavior of the material exposed to microwave field.Analyses of spectrum attenuation and relative frequency shift show that basic cobalt carbonate has weak capability to absorb microwave energy,while cobalt oxide has very strong capability to absorb microwave energy.It is feasible to thermally decompose basic cobalt carbonate though addition of small amount of cobalt oxide in microwave fields.The capability to absorb microwave energy of sample increases with an increase in mixing ratio of Co3O4.展开更多
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr...Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.展开更多
基金Project(50734007) supported by the National Natural Science Foundation of ChinaProject(2007GA002) supported by Project of Scienceand Technology of Yunnan Province,ChinaProject(2008-16) supported by the Analysis and Testing Foundation of Kunming Universityof Science and Technology,China
文摘The microwave absorbing characteristics of basic cobalt carbonate,cobalt oxide(Co3O4),and the mixture of basic cobalt carbonate and cobalt oxide were investigated by means of microwave cavity perturbation,their temperature increasing curves were measured,and their ability to absorb microwave energy was also assessed based on the temperature increasing behavior of the material exposed to microwave field.Analyses of spectrum attenuation and relative frequency shift show that basic cobalt carbonate has weak capability to absorb microwave energy,while cobalt oxide has very strong capability to absorb microwave energy.It is feasible to thermally decompose basic cobalt carbonate though addition of small amount of cobalt oxide in microwave fields.The capability to absorb microwave energy of sample increases with an increase in mixing ratio of Co3O4.
文摘Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.