期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
自组织增量学习神经网络综述 被引量:29
1
作者 邱天宇 申富饶 赵金熙 《软件学报》 EI CSCD 北大核心 2016年第9期2230-2247,共18页
自组织增量学习神经网络SOINN(self-organizing incremental neural network)是一种基于竞争学习的两层神经网络,用于在没有先验知识的情况下对动态输入数据进行在线聚类和拓扑表示,同时,对噪音数据具有较强的鲁棒性.SOINN的增量性,使... 自组织增量学习神经网络SOINN(self-organizing incremental neural network)是一种基于竞争学习的两层神经网络,用于在没有先验知识的情况下对动态输入数据进行在线聚类和拓扑表示,同时,对噪音数据具有较强的鲁棒性.SOINN的增量性,使得它能够发现数据流中出现的新模式并进行学习,同时不影响之前学习的结果.因此,SOINN能够作为一种通用的学习算法应用于各类非监督学习问题中.对SOINN的模型和算法进行相应的调整,可以使其适用于监督学习、联想记忆、基于模式的推理、流形学习等多种学习场景中.SOINN已经在许多领域得到了应用,包括机器人智能、计算机视觉、专家系统、异常检测等. 展开更多
关键词 神经网络 自组织 竞争学习 增量学习
在线阅读 下载PDF
基于自组织映射与概率神经网络的增量式学习算法 被引量:7
2
作者 戚湧 胡俊 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期1-6,共6页
为解决传统学习算法不能有效利用新可用数据这一不足,提出一种基于自组织映射(SOM)和概率神经网络(PNN)的增量式学习算法——增量式模块化自组织映射概率神经网络(IMSOMPNN)。使用模块化SOM对每类训练数据进行学习,以训练后SOM的原型向... 为解决传统学习算法不能有效利用新可用数据这一不足,提出一种基于自组织映射(SOM)和概率神经网络(PNN)的增量式学习算法——增量式模块化自组织映射概率神经网络(IMSOMPNN)。使用模块化SOM对每类训练数据进行学习,以训练后SOM的原型向量作为此类别的模式神经元来构建PNN。IMSOMPNN可以方便地实现对不同类型的新数据进行增量式学习,并且在进行增量学习时,不再需要利用到原始的训练数据,仅使用新的数据对已有模型进行局部调整;最后,IMSOMPNN还具有较强的抗噪能力。在UCI Landsat Satellite数据集上的实验验证了该文所述方法的有效性。 展开更多
关键词 自组织映射 概率神经网络 增量式学习 机器学习
在线阅读 下载PDF
基于自组织增量学习神经网络的信息融合技术 被引量:3
3
作者 时晓峰 申富饶 贺红卫 《兵工自动化》 2015年第5期59-65,共7页
针对传统神经网络在实际信息融合过程中存在的一些缺陷,提出一种基于自组织增量学习神经网络(self-organizing incremental neural network,SOINN)的信息融合方法。对不同类型传感器接收到的异构数据,使用增量式正交分量分析(incrementa... 针对传统神经网络在实际信息融合过程中存在的一些缺陷,提出一种基于自组织增量学习神经网络(self-organizing incremental neural network,SOINN)的信息融合方法。对不同类型传感器接收到的异构数据,使用增量式正交分量分析(incremental orthogonal component analysis,IOCA)方法进行数据自适应降维和特征提取,将提取出的不同类型特征输入到SOINN中,根据不同数据类型生成相应的神经元连接区域,建立神经区域间的联想记忆,从而实现在数据层、特征层以及决策层3个层面上的信息融合。实验结果表明:该方法能够实现对机器人传感器采集到的多源异构数据进行自适应降维和自组织学习,形成机器人的决策判断和行为指令。 展开更多
关键词 智能机器人 信息融合 自组织增量学习神经网络 联想记忆
在线阅读 下载PDF
自组织增量神经网络IDS研究 被引量:2
4
作者 向直扬 朱俊平 《计算机工程与应用》 CSCD 2014年第2期88-91,123,共5页
理想的网络入侵检测系统(IDS)是无监督学习的、在线学习的。现有的满足这两个标准的方法训练速度较慢,无法保证入侵检测系统所需要的低丢包率。为了提高训练速度,提出一种基于改进的自组织增量神经网络(improved SOINN)的网络异常检测方... 理想的网络入侵检测系统(IDS)是无监督学习的、在线学习的。现有的满足这两个标准的方法训练速度较慢,无法保证入侵检测系统所需要的低丢包率。为了提高训练速度,提出一种基于改进的自组织增量神经网络(improved SOINN)的网络异常检测方法,用于在线地、无监督地训练网络数据分类器;并提出使用三种数据精简(Data Reduction)的方法,包括随机子集选取,k-means聚类和主成分分析的方法,来进一步加速改进的SOINN的训练。实验结果表明,提出的方法在保持较高检测率的前提下,减少了训练时间。 展开更多
关键词 异常检测 在线聚类 数据精简 自组织增量神经网络 最近邻分类器
在线阅读 下载PDF
基于自组织增量-图卷积神经网络的金相图半监督学习 被引量:3
5
作者 李维刚 谌竟成 +1 位作者 谢璐 赵云涛 《电子与信息学报》 EI CSCD 北大核心 2021年第11期3301-3308,共8页
采用深度学习对钢铁材料显微组织图像分类,需要大量带标注信息的训练集。针对训练集人工标注效率低下问题,该文提出一种新的融合自组织增量神经网络和图卷积神经网络的半监督学习方法。首先,采用迁移学习获取图像数据样本的特征向量集合... 采用深度学习对钢铁材料显微组织图像分类,需要大量带标注信息的训练集。针对训练集人工标注效率低下问题,该文提出一种新的融合自组织增量神经网络和图卷积神经网络的半监督学习方法。首先,采用迁移学习获取图像数据样本的特征向量集合;其次,通过引入连接权重策略的自组织增量神经网络(WSOINN)对特征数据进行学习,获得其拓扑图结构,并引入胜利次数进行少量人工节点标注;然后,搭建图卷积网络(GCN)挖掘图中节点的潜在联系,利用Dropout手段提高网络的泛化能力,对剩余节点进行自动标注进而获得所有金相图的分类结果。针对从某国家重点实验室收集到的金相图数据,比较了在不同人工标注比例下的自动分类精度,结果表明:在图片标注量仅为传统模型12%时,新模型的分类准确度可达到91%。 展开更多
关键词 自组织增量神经网络 图卷积神经网络 自动标注 钢材显微组织
在线阅读 下载PDF
基于增量式GHSOM神经网络模型的入侵检测研究 被引量:82
6
作者 杨雅辉 黄海珍 +2 位作者 沈晴霓 吴中海 张英 《计算机学报》 EI CSCD 北大核心 2014年第5期1216-1224,共9页
传统的网络入侵检测方法利用已知类型的攻击样本以离线的方式训练入侵检测模型,虽然对已知攻击类型具有较高的检测率,但是不能识别网络上新出现的攻击类型.这样的入侵检测系统存在着建立系统的速度慢、模型更新代价高等不足,面对规模日... 传统的网络入侵检测方法利用已知类型的攻击样本以离线的方式训练入侵检测模型,虽然对已知攻击类型具有较高的检测率,但是不能识别网络上新出现的攻击类型.这样的入侵检测系统存在着建立系统的速度慢、模型更新代价高等不足,面对规模日益扩大的网络和层出不穷的攻击,缺乏自适应性和扩展性,难以检测出网络上新出现的攻击类型.文中对GHSOM(Growing Hierarchical Self-Organizing Maps)神经网络模型进行了扩展,提出了一种基于增量式GHSOM神经网络模型的网络入侵检测方法,在不破坏已学习过的知识的同时,对在线检测过程中新出现的攻击类型进行增量式学习,实现对入侵检测模型的动态扩展.作者开发了一个基于增量式GHSOM神经网络模型的在线网络入侵检测原型系统,在局域网环境下开展了在线入侵检测实验.实验结果表明增量式GHSOM入侵检测方法具有动态自适应性,能够实现在线检测过程中对GHSOM模型的动态更新,而且对于网络上新出现的攻击类型,增量式GHSOM算法与传统GHSOM算法的检测率相当. 展开更多
关键词 增量式学习 生长型分层自组织映射 入侵检测 神经网络 信息安全 网络安全
在线阅读 下载PDF
基于事例推理模糊神经网络的中压配电网短期节点负荷预测 被引量:27
7
作者 余贻鑫 吴建中 《中国电机工程学报》 EI CSCD 北大核心 2005年第12期18-23,共6页
根据认知科学理论,在并行分布处理(PDP)模型基础上,提出了一种基于事例推理的模糊神经网络(CBRFNN)。分析了CBRFNN的原理,定义了CBRFNN的基本结构,并提出一种混合(有监督/无监督)学习算法,使得CBRFNN具备了很好的泛化能力。CBRFNN中的... 根据认知科学理论,在并行分布处理(PDP)模型基础上,提出了一种基于事例推理的模糊神经网络(CBRFNN)。分析了CBRFNN的原理,定义了CBRFNN的基本结构,并提出一种混合(有监督/无监督)学习算法,使得CBRFNN具备了很好的泛化能力。CBRFNN中的所有节点通过快速、增量式的学习过程动态生成,并可通过网络自组织来有效抵御坏数据的影响。所提方法很好地解决了中压配电网短期节点负荷预测这类信息不完备、不精确问题。 展开更多
关键词 模糊神经网络 基于事例推理 中压配电网 负荷预测 节点 短期 并行分布处理 科学理论 学习算法 泛化能力 动态生成 学习过程 本结构 增量 坏数据 自组织 类信息 监督
在线阅读 下载PDF
容量约束的自组织增量联想记忆模型 被引量:1
8
作者 孙桃 谢振平 +1 位作者 王士同 刘渊 《计算机科学与探索》 CSCD 北大核心 2016年第1期130-141,共12页
自组织联想记忆神经网络因其并行、容错及自我学习等优点而得到广泛应用,但现有主流模型在增量学习较大规模样本时,网络节点数可能无限增长,从而给实际应用带来不可承受的内存及计算开销。针对该问题,提出了一种容量约束的自组织增量联... 自组织联想记忆神经网络因其并行、容错及自我学习等优点而得到广泛应用,但现有主流模型在增量学习较大规模样本时,网络节点数可能无限增长,从而给实际应用带来不可承受的内存及计算开销。针对该问题,提出了一种容量约束的自组织增量联想记忆模型。以网络节点数为先决控制参数,结合设计新的节点间自竞争学习策略,新模型可满足大规模样本的增量式学习需求,并能以较低的计算容量取得较高的联想记忆性能。理论分析表明了新模型的正确性与有效性,实验分析同时显示了新模型可有效控制计算容量,提升增量样本学习效率,并获得较高的联想记忆性能,从而能更好地满足现实应用需求。 展开更多
关键词 联想记忆 容量约束 增量学习 自组织 神经网络
在线阅读 下载PDF
基于SOINN增量自编码器的网络异常检测研究 被引量:1
9
作者 吴署光 王宏艳 +1 位作者 颜南江 王宇 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第5期239-248,共10页
针对批量学习的网络异常检测模型存在内存资源消耗大、无法在线更新的问题,利用自组织增量神经网络(self-organizing incremental neural network,SOINN)的增量学习特性,提出一种增量自编码器构建方式,将改进SOINN的输出神经元作为自动... 针对批量学习的网络异常检测模型存在内存资源消耗大、无法在线更新的问题,利用自组织增量神经网络(self-organizing incremental neural network,SOINN)的增量学习特性,提出一种增量自编码器构建方式,将改进SOINN的输出神经元作为自动编码器的输入,使得模型在不破坏已有学习成果的基础上,具备增量更新能力。针对SOINN算法获胜神经元邻居节点学习率固定,不利于区分其与输入样本的相似性的问题,提出一种学习率自适应调整方法,来提升获胜神经元邻居节点的学习效率,使得算法输出神经元更能代表样本特性。针对反馈更新样本中正常样本纯度不高的问题,提出一种基于距离度量的样本标签筛选机制,通过计算反馈样本与神经元的距离来对正常样本进行筛选,使得反馈样本中正常样本比例更高,以此来提升模型的在线检测效果。在NSL-KDD数据集上开展了相关实验,实验证明所提方法具备增量学习能力,且改进SOINN的增量学习效果优于原始算法,有效节省了模型的运算和存储开销,通过基于距离的样本标签筛选机制,模型的在线检测能力有效提升。 展开更多
关键词 异常检测 自组织增量神经网络 自动编码器 增量学习 在线学习
在线阅读 下载PDF
自适应类增量学习的物联网入侵检测系统 被引量:7
10
作者 刘强 张颖 +3 位作者 周卫祥 蒋先涛 周薇娜 周谋国 《计算机工程》 CAS CSCD 北大核心 2023年第2期169-174,共6页
传统物联网入侵检测系统难以实时检测新类别攻击,为此,提出一种基于堆叠稀疏自编码器(SSAE)和自组织增量神经网络(SOINN)的物联网入侵检测方法。SSAE对已知类别的攻击样本进行稀疏编码和特征提取,所提取的特征输入SOINN,SOINN形成符合... 传统物联网入侵检测系统难以实时检测新类别攻击,为此,提出一种基于堆叠稀疏自编码器(SSAE)和自组织增量神经网络(SOINN)的物联网入侵检测方法。SSAE对已知类别的攻击样本进行稀疏编码和特征提取,所提取的特征输入SOINN,SOINN形成符合流量特征空间分布的拓扑结构。当出现新类别训练样本的特征时,SOINN自适应地生成新节点以建立新的局部拓扑结构。为了保留SSAE在旧类别样本上的知识,对SOINN已有的拓扑结构施加约束,通过误差反向传递间接约束SSAE权重的变化。针对SOINN在新类别上产生的新局部拓扑结构进行自适应聚合和优化,从而实现新类别样本学习。实验结果表明,该方法能基于新类别数据对模型进行增量训练而无需历史类别数据,在CIC-IDS2017数据集的动态数据流中能有效检测新类别攻击同时缓解旧类别数据中存在的灾难性遗忘问题,在初始已知数据集上的准确率达到98.15%,完成3个阶段的类别增量学习后整体准确率仍能达到57.34%,优于KNN-SVM、mCNN等增量学习方法。 展开更多
关键词 入侵检测系统 堆叠稀疏自编码器 自组织增量神经网络 增量学习 知识保留
在线阅读 下载PDF
基于ESOINN的离散制造车间生产异常实时检测方法研究 被引量:3
11
作者 崔世婷 郭宇 +1 位作者 汪伟丽 梁睿君 《机械设计与制造》 北大核心 2023年第8期104-109,共6页
离散制造车间存在制造要素偏离生产计划导致的生产异常事件,准确的车间异常检测有助于实时监控生产过程,提高动态决策响应速度,保证订单按时交付。针对异常检测的准确性和实时性需求,提出一种增量式无监督学习的车间生产异常检测方法。... 离散制造车间存在制造要素偏离生产计划导致的生产异常事件,准确的车间异常检测有助于实时监控生产过程,提高动态决策响应速度,保证订单按时交付。针对异常检测的准确性和实时性需求,提出一种增量式无监督学习的车间生产异常检测方法。首先,以在制品在车间的流转过程为主线定义生产异常种类,搭建离散制造车间生产异常检测框架;其次,使用增强自组织增量神经网络实时检测生产异常,并根据当前生产数据在线更新模型,以适应数据分布的动态变化,提高模型检测准确率;最后以某航天机加车间为例,将所提方法与两种增量式及两种非增量式聚类算法进行对比实验,并在离散制造车间应用生产异常检测系统,验证了该方法在生产异常检测问题上的有效性。 展开更多
关键词 离散制造车间 生产异常检测 增量学习 增强自组织增量神经网络
在线阅读 下载PDF
基于功效特征的专利聚类方法 被引量:2
12
作者 马建红 曹文斌 +1 位作者 刘元刚 夏爽 《计算机应用》 CSCD 北大核心 2021年第5期1361-1366,共6页
当前专利是按照领域划分的,而基于功效特征可以实现跨领域的专利聚类,这在企业创新设计中具有重要意义,而精确提取专利功效特征和快速获得最优聚类结果是其中的关键任务。为此提出一种信息实体语义增强表示(ERNIE)和卷积神经网络(CNN)... 当前专利是按照领域划分的,而基于功效特征可以实现跨领域的专利聚类,这在企业创新设计中具有重要意义,而精确提取专利功效特征和快速获得最优聚类结果是其中的关键任务。为此提出一种信息实体语义增强表示(ERNIE)和卷积神经网络(CNN)相结合的功效特征联合提取(FEI-Joint)模型来提取专利文献的功效特征,并且改进自组织神经网络(SOM)算法,从而提出具有早期拒绝策略与类合并思想的自组织神经网络(ERCM-SOM)来实现基于功效特征的专利聚类。对FEI-Joint模型与TF-IDF、狄利克雷分布(LDA)、CNN在特征提取后的聚类效果上进行比较和分析,结果表明其F-measure值比其他模型有明显提高。ERCM-SOM算法与K-Means算法、SOM算法相比,在Fmeasure值提高的同时,其时间较SOM算法有明显缩短。对比使用专利分类号(IPC)的专利分类,采用基于功效特征的聚类方法可实现跨领域的专利聚类效果,为设计者借鉴其他领域的设计方法奠定了基础。 展开更多
关键词 专利聚类 信息实体语义增强表示 卷积神经网络 跨领域 自组织神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部