期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
航空发动机增强型机载自适应模型气路故障诊断方法 被引量:1
1
作者 王灿灿 孔祥兴 +1 位作者 梁宁宁 童志伟 《航空发动机》 北大核心 2021年第S01期108-114,共7页
针对航空发动机在工程应用中气路健康状态的评估问题,提出一种基于增强型机载自适应模型的气路故障诊断方法。该方法在机载模型中加入神经网络补偿算法,在线修正机载模型的输出误差,提高了卡尔曼滤波器估计精度,以此为基础建立了发动机... 针对航空发动机在工程应用中气路健康状态的评估问题,提出一种基于增强型机载自适应模型的气路故障诊断方法。该方法在机载模型中加入神经网络补偿算法,在线修正机载模型的输出误差,提高了卡尔曼滤波器估计精度,以此为基础建立了发动机增强型自适应模型和性能基线模型。增强型自适应模型可实时评估健康参数状态,并指导性能基线模型跟踪发动机正常性能降级趋势,确保剪裁精准的故障信息用于检测和诊断。基于发动机性能仿真模型模拟故障特征数据库,采用RBF神经网络训练样本,完成了故障模式判定和故障隔离。通过构建某型涡轴发动机气路故障诊断平台进行仿真验证,结果表明:该方法能够有效监视发动机在全包线、全寿命周期的气路健康状况,在实际工作流程中具备可行性。 展开更多
关键词 气路故障诊断 增强型自适应模型 性能基线模型 健康管理 航空发动机
在线阅读 下载PDF
4种遥感数据时空融合模型生成高分辨率归一化植被指数的对比分析 被引量:2
2
作者 李思源 叶真妮 +2 位作者 毛勇伟 陈玉玲 曾纳 《浙江农林大学学报》 CAS CSCD 北大核心 2023年第2期427-435,共9页
【目的】针对时空融合方法在遥感植被状况调查及动态变化监测中的应用,比对时空自适应反射率融合模型(STARFM)、增强型时空自适应反射率融合模型(ESTARFM)、回归拟合空间滤波和残差补偿模型(Fit-FC)和规则集回归树融合模型(RPRTM)等4种... 【目的】针对时空融合方法在遥感植被状况调查及动态变化监测中的应用,比对时空自适应反射率融合模型(STARFM)、增强型时空自适应反射率融合模型(ESTARFM)、回归拟合空间滤波和残差补偿模型(Fit-FC)和规则集回归树融合模型(RPRTM)等4种时空融合模型对归一化植被指数(NDVI)的融合效果。【方法】以三江源地区2块具有差异性地表特征的区域为研究样地,采用上述4种时空融合方法,融合空间分辨率30 m的Landsat 8影像和250 m时间步长16 d的MODIS NDVI数据,生成步长为16 d的30 m空间分辨率的NDVI数据。基于Landsat NDVI影像通过定性的目视判别和定量的统计分析来评价不同融合模型结果的空间特征模拟效果,并以真实的MODIS NDVI时间动态为参考,分析了不同融合方法对地表植被动态特征的拟合效果。【结果】(1)关于空间特征的捕捉,在地表覆盖状况较复杂的区域,RPRTM融合效果最佳(R2=0.82);而对于输入影像差异较大的区域,ESTARFM融合效果最佳(R2=0.95)。(2)关于时间动态的捕捉,RPRTM针对不同的植被型均取得了最佳效果(R2为0.97~0.99)。(3)相对于模型输入数据的时空可比性,地表异质性对STARFM和ESTARFM融合效果的影响更大。【结论】4种时空融合模型能有效用于生成高时空分辨率的NDVI数据,不同模型其融合效果各有不同,RPRTM在复杂地表区域与模拟植被生长动态变化中均有较好表现。 展开更多
关键词 时空数据融合 归一化植被指数 增强型时空自适应反射率融合模型 规则集回归树融合模型 回归拟合空间滤波和残差补偿模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部