当作物生物量较大时,现有植被指数由于受饱和问题限制,不能较好的估算作物生物量。针对此问题,尝试将波段深度分析与偏最小二乘回归(partial least square regression,PLSR)结合,提高对大田冬小麦生物量的估算精度,并将两者结合建立的...当作物生物量较大时,现有植被指数由于受饱和问题限制,不能较好的估算作物生物量。针对此问题,尝试将波段深度分析与偏最小二乘回归(partial least square regression,PLSR)结合,提高对大田冬小麦生物量的估算精度,并将两者结合建立的模型与应用代表性植被指数建立的模型进行生物量估算精度比较。波段深度分析主要对冬小麦冠层光谱550~750nm范围进行,采用波段深度、波段深度比(band depth ratio,BDR)、归一化波段深度指数和归一化面积波段深度对波段深度信息进行表征。在建立的模型中,波段深度分析和PLSR结合的估算精度比应用植被指数模型的精度高,其中BDR与PLSR结合的估算精度最高(R2=0.792,RMSE=0.164kg.m-2)。研究结果表明波段深度分析与PLSR结合能较好的克服生物量较大时存在的饱和问题,提高冬小麦生物量的估算精度。展开更多
利用傅里叶近红外光谱(FT-NIRS)测定了苹果的硬度。通过使用几种基于遗传算法和间隔偏最小二乘法的特征波长选取方法,包括动态向后间隔偏最小二乘(dynamic backward version of interval PLS,dynamic biPLS)、动态向后间隔偏最小二乘结...利用傅里叶近红外光谱(FT-NIRS)测定了苹果的硬度。通过使用几种基于遗传算法和间隔偏最小二乘法的特征波长选取方法,包括动态向后间隔偏最小二乘(dynamic backward version of interval PLS,dynamic biPLS)、动态向后间隔偏最小二乘结合遗传算法(dynamic biPLS & GA-PLS)和反复的遗传算法(iterative GA-PLS),分析了苹果硬度的特征波长。结果表明,运用遗传算法和间隔偏最小二乘选择特征波长后,不但可以降低模型的复杂度,同时能够达到提高模型预测精度的效果。在此基础上,研究分析了苹果硬度特征波长的物理化学意义。由于果胶是在苹果成熟过程中一种和硬度有很大关联的物质,通过比较苹果硬度的特征波长和果胶的特征吸收峰,发现两者具有有很好的一致性。因此,采用遗传算法和间隔偏最小二乘法得到的苹果硬度的特征波长能够反映果胶的吸收信息,从而解释了近红外技术检测苹果硬度的机理。展开更多