SiGe合金是重要的高温热电材料,其热电性能的优化一直备受关注。采用电弧熔炼和热压烧结成功制备了Si_(0.85)Ge_(0.15) B x(x=0.01,0.015,0.04,0.045,0.05,0.06)合金。利用X射线衍射技术、扫描电子显微镜并结合能谱技术对样品的物相结...SiGe合金是重要的高温热电材料,其热电性能的优化一直备受关注。采用电弧熔炼和热压烧结成功制备了Si_(0.85)Ge_(0.15) B x(x=0.01,0.015,0.04,0.045,0.05,0.06)合金。利用X射线衍射技术、扫描电子显微镜并结合能谱技术对样品的物相结构、微观形貌和化学成分进行了表征。研究了B掺杂对Si_(0.85)Ge_(0.15)合金的电热输运性能影响。研究表明,在300~950 K的温度范围内,塞贝克系数均为正值,表明了P型半导体特性,且随温度的升高,塞贝克系数增大。随着B掺杂浓度的增加,电导率逐渐增加,塞贝克系数则不断降低。在950 K时,Si_(0.85)Ge_(0.15) B 0.01样品的塞贝克系数最大,温度为750 K时,B掺杂含量为0.04的样品功率因子具有最大值,为1.72×10^(-3) Wm^(-1)·K^(-2),900 K时,B掺杂含量为0.04的样品ZT值达到了0.4,相比于B掺杂含量为0.01的样品,其热电性能提升了约1.5倍。展开更多
利用微波技术合成了Ca3Co4O9化合物,考察了微波加热时间对产物纯度和微观结构的影响;再利用微波及常规烧结技术制备了Ca3Co4O9热电陶瓷片,考察了烧结时间、烧结方式对材料微观结构和热电性能的影响.结果表明:二次微波烧结30 min制备的...利用微波技术合成了Ca3Co4O9化合物,考察了微波加热时间对产物纯度和微观结构的影响;再利用微波及常规烧结技术制备了Ca3Co4O9热电陶瓷片,考察了烧结时间、烧结方式对材料微观结构和热电性能的影响.结果表明:二次微波烧结30 min制备的热电陶瓷片在所测试温度范围内具有低电阻率、高塞贝克系数及最佳功率因子,其中966 K时微波产物的最大功率因子为0.141 m W/m K2,而常规高温烧结产物的功率因子为0.120 m W/m K2.展开更多
采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)T...采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。展开更多
文摘SiGe合金是重要的高温热电材料,其热电性能的优化一直备受关注。采用电弧熔炼和热压烧结成功制备了Si_(0.85)Ge_(0.15) B x(x=0.01,0.015,0.04,0.045,0.05,0.06)合金。利用X射线衍射技术、扫描电子显微镜并结合能谱技术对样品的物相结构、微观形貌和化学成分进行了表征。研究了B掺杂对Si_(0.85)Ge_(0.15)合金的电热输运性能影响。研究表明,在300~950 K的温度范围内,塞贝克系数均为正值,表明了P型半导体特性,且随温度的升高,塞贝克系数增大。随着B掺杂浓度的增加,电导率逐渐增加,塞贝克系数则不断降低。在950 K时,Si_(0.85)Ge_(0.15) B 0.01样品的塞贝克系数最大,温度为750 K时,B掺杂含量为0.04的样品功率因子具有最大值,为1.72×10^(-3) Wm^(-1)·K^(-2),900 K时,B掺杂含量为0.04的样品ZT值达到了0.4,相比于B掺杂含量为0.01的样品,其热电性能提升了约1.5倍。
文摘利用微波技术合成了Ca3Co4O9化合物,考察了微波加热时间对产物纯度和微观结构的影响;再利用微波及常规烧结技术制备了Ca3Co4O9热电陶瓷片,考察了烧结时间、烧结方式对材料微观结构和热电性能的影响.结果表明:二次微波烧结30 min制备的热电陶瓷片在所测试温度范围内具有低电阻率、高塞贝克系数及最佳功率因子,其中966 K时微波产物的最大功率因子为0.141 m W/m K2,而常规高温烧结产物的功率因子为0.120 m W/m K2.
文摘采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。