The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In ord...The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.展开更多
In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial func...In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃展开更多
The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yield...The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yielding criterion of rock mass. Damage factors are proposed to account for degradation of the material parameters to reflect the degree of strain softening. The surrounding rock mass around the cavity is divided into three regions: elastic region, strain softening region and residual state region. The analytical solutions of stress, strain, displacement and radius of each region are obtained. The effects of the strain softening and shear dilatancy behavior on the results are investigated with parametric studies. The results show that the radii of the residual state region and strain softening region in the surrounding rock mass with higher damage degree are larger. The radii of the residual state region and strain softening region are 1-2 times and 1.5-3 times of the cavity radius, respectively. The radial and tangential stresses decrease with the increase of the damage factor. The displacement of the cavity wall for the case with maximum plastic bulk strain is nearly twice than that with no dilation. Rock mass moves more toward the center for the case with larger damage factor and shear dilation. The area of the plastic region is larger when the damage factors are considered. The displacements in the surrounding rock mass increase with the increase of the damage factors and shear dilation factors. The solutions can be applied to the stability analysis and support design of the underground excavation.展开更多
基金Project(2006BAJ03A03)supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period of China
文摘The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.
基金Project(2011CB013800)supported by the National Basic Research Program of ChinaProject(10672063)supported by the National Natural Science Foundation of ChinaProject(Y201119)supported by the Hubei Province Key Laboratory of Systems Science in Metallurgical Process,China
文摘In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃
基金Project(11102219) supported by the National Natural Science Foundation of ChinaProject(2013CB036405) supported by the National Basic Research Program of China
文摘The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yielding criterion of rock mass. Damage factors are proposed to account for degradation of the material parameters to reflect the degree of strain softening. The surrounding rock mass around the cavity is divided into three regions: elastic region, strain softening region and residual state region. The analytical solutions of stress, strain, displacement and radius of each region are obtained. The effects of the strain softening and shear dilatancy behavior on the results are investigated with parametric studies. The results show that the radii of the residual state region and strain softening region in the surrounding rock mass with higher damage degree are larger. The radii of the residual state region and strain softening region are 1-2 times and 1.5-3 times of the cavity radius, respectively. The radial and tangential stresses decrease with the increase of the damage factor. The displacement of the cavity wall for the case with maximum plastic bulk strain is nearly twice than that with no dilation. Rock mass moves more toward the center for the case with larger damage factor and shear dilation. The area of the plastic region is larger when the damage factors are considered. The displacements in the surrounding rock mass increase with the increase of the damage factors and shear dilation factors. The solutions can be applied to the stability analysis and support design of the underground excavation.