A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method u...A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.展开更多
The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researc...The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.展开更多
基金Projects(cstc2012jjA0510,cstc2013jcyjA30014)supported by Chongqing Natural Science Foundation in ChinaProject(CDJZR12200011)supported by the Fundamental Research Funds for the Central Universities in China+1 种基金Project(KJTD201305)supported by the Innovation Team Building Programs of Chongqing Universities in ChinaProject supported by the Scientific Research Foundation for the Returned Oversea Chinese Scholars
文摘A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.
文摘The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft.