期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进堆栈降噪自动编码器的预想事故频率指标评估方法研究 被引量:34
1
作者 赵荣臻 文云峰 +4 位作者 叶希 唐权 李文沅 陈云辉 瞿小斌 《中国电机工程学报》 EI CSCD 北大核心 2019年第14期4081-4092,共12页
可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多... 可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。 展开更多
关键词 一次调频 频率指标 深度学习 随机森林 改进堆栈降噪自动编码器 DROPOUT 均方根反向传播优化
在线阅读 下载PDF
基于堆栈降噪自动编码器的桥梁损伤识别方法 被引量:8
2
作者 谢祥辉 单德山 周筱航 《铁道建筑》 北大核心 2018年第5期1-5,共5页
基于深度学习理论,针对现有桥梁损伤模式识别法的不足,利用多个降噪自动编码器进行损伤特征的提取与组合,应用Softmax方法判断损伤模式,提出了基于堆栈降噪自动编码器的桥梁损伤识别方法。为了验证所提方法的准确性,以连续梁桥为例,使... 基于深度学习理论,针对现有桥梁损伤模式识别法的不足,利用多个降噪自动编码器进行损伤特征的提取与组合,应用Softmax方法判断损伤模式,提出了基于堆栈降噪自动编码器的桥梁损伤识别方法。为了验证所提方法的准确性,以连续梁桥为例,使用所提方法及现有BP神经网络法进行损伤位置识别,对比了2种方法的识别精度和抗噪性能。研究结果表明:所提方法能准确识别损伤位置,相对于现有BP神经网络法具有更强的损伤识别能力、更高的识别精度及较强的抗噪能力。 展开更多
关键词 公路桥梁 损伤识别 深度学习 堆栈降噪自动编码器 连续梁桥
在线阅读 下载PDF
基于深度学习的概率能量流快速计算方法 被引量:44
3
作者 余娟 杨燕 +5 位作者 杨知方 向明旭 谢松 周平 任鹏凌 张昱 《中国电机工程学报》 EI CSCD 北大核心 2019年第1期22-30,共9页
考虑新能源日益增长的不确定性,概率能量流在电–气综合能源系统分析中起到关键性作用。概率能量流计算需要求解大量高维非线性方程组。高计算代价和求解时间已成为概率能量流实际工程应用的瓶颈所在。为此,该文提出了利用深度神经网络... 考虑新能源日益增长的不确定性,概率能量流在电–气综合能源系统分析中起到关键性作用。概率能量流计算需要求解大量高维非线性方程组。高计算代价和求解时间已成为概率能量流实际工程应用的瓶颈所在。为此,该文提出了利用深度神经网络求解该问题的新方法。该方法借助堆栈降噪自动编码器(stacked denoising auto-encoders,SDAE)的深层堆栈结构以及编码解码过程,建立了基于SDAE的能量流模型,可有效挖掘非线性能量流方程的高阶特征。结合能量流输入输出性质不同、变化范围不一等数值特点,在SDAE模型中引入了修正线性单元(rectifiedlinearunit,ReLU)激活函数与离差标准化方法,可有效提高训练精度与速度。结合蒙特卡洛法抽样出待解样本,使用训练后的SDAE能量流模型,通过数据映射得到抽样样本的能量流结果,在不增加硬件成本的前提下求解概率能量流,求解时间和精度符合在线应用要求。最后,在IEEE14-NGS10电–气综合能源系统中验证了所提方法的有效性。 展开更多
关键词 概率能量流 深度神经网络 堆栈降噪自动编码器 蒙特卡洛模拟法
在线阅读 下载PDF
基于SDA和KPCA特征融合的供输弹系统早期故障识别 被引量:3
4
作者 梁海英 许昕 +2 位作者 潘宏侠 付志敏 张航 《中国测试》 CAS 北大核心 2019年第4期141-145,150,共6页
对于供输弹系统早期故障信号成分复杂,潜在故障征兆难以识别的问题,提出基于堆叠式降噪自动编码器(SDA)和核主成分分析(KPCA)特征融合的早期故障识别方法。所采集的供输弹系统信号经过去趋势项和五点三次平滑法处理后,首先将不同状态的... 对于供输弹系统早期故障信号成分复杂,潜在故障征兆难以识别的问题,提出基于堆叠式降噪自动编码器(SDA)和核主成分分析(KPCA)特征融合的早期故障识别方法。所采集的供输弹系统信号经过去趋势项和五点三次平滑法处理后,首先将不同状态的振动信号和声压信号分别通过SDA进行特征提取;然后用KPCA对提取的振动信号和声压信号特征进行融合;最后运用支持向量机(SVM)对融合前后的特征分别进行识别并对比。试验结果表明,该方法能有效地对供输弹系统早期故障进行识别,且识别准确率达92.4%。 展开更多
关键词 供输弹系统 堆栈降噪自动编码器 核主成分分析 信息融合 故障识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部