期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SDAE预测模型和改进SSA的NO_(x)排放优化 被引量:6
1
作者 马良玉 孙佳明 《中国电机工程学报》 EI CSCD 北大核心 2022年第14期5194-5201,共8页
为降低锅炉燃烧系统氮氧化物(nitrogen oxide,NO_(x))的排放浓度,基于某1000MW火电机组采集的真实历史运行数据,采用堆叠降噪自编码器(stacked denoising auto-encoder,SDAE)建立了NO_(x)排放浓度的预测模型,进而提出一种基于改进麻雀... 为降低锅炉燃烧系统氮氧化物(nitrogen oxide,NO_(x))的排放浓度,基于某1000MW火电机组采集的真实历史运行数据,采用堆叠降噪自编码器(stacked denoising auto-encoder,SDAE)建立了NO_(x)排放浓度的预测模型,进而提出一种基于改进麻雀搜索算法(sparrow search algorithm,SSA)的锅炉配风配粉优化策略。为提高SSA的寻优能力,提出一种引入萤火虫扰动的混沌优化麻雀搜索算法(chaotic optimized sparrow search algorithm with the introduction of firefly perturbation,FCOSSA),该算法采用Tent混沌映射使初始个体尽可能分布均匀,以增加初始种群的多样性,利用萤火虫扰动方式对所有麻雀位置进行更新。经典测试函数优化试验表明了FCOSSA的优越性。针对某给定负荷稳态运行工况,以降低NO_(x)排放为目标,利用方法对锅炉各磨煤机的给煤量及二次风门开度等进行寻优,结果表明优化后锅炉的NO_(x)排放浓度可有效降低,验证了方法的有效性。 展开更多
关键词 锅炉运行优化 NO_(x)排放 堆栈式降噪自编码器 麻雀搜索算法 混沌映射 萤火虫扰动
在线阅读 下载PDF
基于深度学习的蛋白质亚细胞定位预测 被引量:4
2
作者 王艺皓 丁洪伟 +2 位作者 李波 保利勇 张颖婕 《计算机应用》 CSCD 北大核心 2020年第11期3393-3399,共7页
针对传统机器学习算法中仍需手工操作表示特征的问题,提出了一种基于堆栈式降噪自编码器(SDAE)深度网络的蛋白质亚细胞定位算法。首先,分别利用改进型伪氨基酸组成法(PseAAC)、伪位置特异性得分矩阵法(PsePSSM)和三联体编码法(CT)对蛋... 针对传统机器学习算法中仍需手工操作表示特征的问题,提出了一种基于堆栈式降噪自编码器(SDAE)深度网络的蛋白质亚细胞定位算法。首先,分别利用改进型伪氨基酸组成法(PseAAC)、伪位置特异性得分矩阵法(PsePSSM)和三联体编码法(CT)对蛋白质序列进行特征提取,并将这三种方法得到的特征向量进行融合,以得到一个全新的蛋白质序列特征表达模型;接着,将融合后的特征向量输入到SDAE深度网络里自动学习更有效的特征表示;然后选用Softmax回归分类器进行亚细胞的分类预测,并采用留一法在Viral proteins和Plant proteins两个数据集上进行交叉验证;最后,将所提算法的结果与mGOASVM、HybridGO-Loc等多种现有算法的结果进行比较。实验结果表明,所提算法在Viral proteins数据集上取得了98.24%的准确率,与mGOASVM算法相比提高了9.35个百分点;同时所提算法在Plant proteins数据集上取得了97.63%的准确率,比mGOASVM算法和HybridGO-Loc算法分别提高了10.21个百分点和4.07个百分点。综上说明所提算法可以有效提高蛋白质亚细胞定位预测的准确性。 展开更多
关键词 深度学习 特征融合 蛋白质定位 堆栈式降噪自编码器 留一法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部