期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
堆叠集成模型径流预报效果的影响因素研究 被引量:2
1
作者 林泳恩 孟越 +2 位作者 杜懿 王大洋 王大刚 《水文》 CSCD 北大核心 2023年第1期57-61,共5页
为了研究堆叠集成模型预报效果的可能影响因素,以安墩水流域为例,选择支持向量回归、多元线性回归、长短期记忆神经网络、前馈神经网络、梯度提升回归树、自回归积分滑动平均模型以及自适应增强算法作为基学习器,选择多元线性回归、支... 为了研究堆叠集成模型预报效果的可能影响因素,以安墩水流域为例,选择支持向量回归、多元线性回归、长短期记忆神经网络、前馈神经网络、梯度提升回归树、自回归积分滑动平均模型以及自适应增强算法作为基学习器,选择多元线性回归、支持向量回归、多层感知机作为元学习器,建立多个堆叠集成模型,并基于平均绝对误差、均方根误差、纳什效率系数构建综合评价指标,对各集成模型的预报效果进行了对比分析。研究表明,堆叠集成模型的预测效果与基学习器的数量无关,与基学习器的质量呈正相关关系。此外,不同的元学习器选择也会对堆叠集成模型的预测效果产生影响。该研究可为利用堆叠集成模型进行径流预报提供科学指导。 展开更多
关键词 堆叠集成模型 径流预报 机器学习 基学习器 元学习器
在线阅读 下载PDF
基于灰色关联分析下深度学习盾构姿态预测模型
2
作者 满轲 柳宗旭 +3 位作者 商艳 宋志飞 刘晓丽 苏宝 《工程科学与技术》 北大核心 2025年第2期203-213,共11页
为解决盾构姿态偏离隧道设计轴线的问题,提出一种基于长短期记忆(LSTM)与支持向量回归(SVR)的堆叠集成预测模型。利用灰色关联分析将灰色关联度较低的滚动角参数剔除后通过离散小波转换(DWT)去噪处理,将处理后的数据分别进行两个单一模... 为解决盾构姿态偏离隧道设计轴线的问题,提出一种基于长短期记忆(LSTM)与支持向量回归(SVR)的堆叠集成预测模型。利用灰色关联分析将灰色关联度较低的滚动角参数剔除后通过离散小波转换(DWT)去噪处理,将处理后的数据分别进行两个单一模型预测后进行最优赋权得到DWT-LSTM-SVR堆叠预测模型。其中,将刀盘水平位移、盾尾水平位移、刀盘垂直位移和盾尾垂直位移作为预测模型的输出变量,其余22个掘进参数和5个地层参数为输入变量,并将DWT-LSTM-SVR模型应用于珠江三角洲水资源配置工程A3标段。结果表明:DWT-LSTM-SVR模型的4个盾构姿态参数预测值与真实值误差与其他模型相比较小,说明该模型可以有效结合单一模型,且在剔除与4个盾构姿态参数关联度较低的参数后可以提高模型预测精度;DWT-LSTM-SVR模型的评价指标均满足施工误差要求,其中,对于盾尾位移值的预测效果较好,平均绝对百分比误差约为0.02,拟合度R 2值均高于0.98,说明DWT-LSTM-SVR模型可以满足模型设计要求。通过建立不同数据集分析数据数量对堆叠模型预测精度的敏感性,结果表明数据越多堆叠模型预测精度越高,可为其他盾构姿态的提前调整提供一定参考。 展开更多
关键词 盾构姿态 灰色关联度 深度学习 集成预测模型 误差预测
在线阅读 下载PDF
基于Stacking集成的籽棉回潮率信息融合检测方法研究
3
作者 钱一夫 黄杰 +2 位作者 方亮 段宏伟 张梦芸 《农业机械学报》 北大核心 2025年第5期159-166,共8页
针对棉花采收和收购环节中籽棉回潮率检测工序复杂、受人工影响因素较大、检测精度低的问题,提出了一种基于电阻技术的信息融合检测方法。分别采集了环境温湿度以及籽棉电阻、密度与回潮率,分析了籽棉回潮率随环境温湿度变化规律,讨论... 针对棉花采收和收购环节中籽棉回潮率检测工序复杂、受人工影响因素较大、检测精度低的问题,提出了一种基于电阻技术的信息融合检测方法。分别采集了环境温湿度以及籽棉电阻、密度与回潮率,分析了籽棉回潮率随环境温湿度变化规律,讨论了籽棉密度对籽棉电阻检测的影响,确定了籽棉电阻与回潮率的关系。为了提高籽棉回潮率检测的精确性和稳定性,融合环境温湿度及籽棉电阻和密度作为特征变量,将“环境参数-物理特性-电学特性”进行数据关联;建立多元线性回归、支持向量回归、随机森林等5类回归模型,采用“模型竞争-集成优化”策略建立堆叠集成融合模型预测回潮率,实现了数据级和决策级的信息融合。结果表明,基于信息融合的堆叠集成模型为最优回潮率预测模型,在测试数据集上其决定系数R^(2)为0.994,平均绝对误差(MAE)为0.104%,均方根误差(RMSE)为0.151%,验证了信息融合检测方法的可靠性。该方法可为棉花采收打包和收购环节的回潮率检测提供数据支撑。 展开更多
关键词 籽棉回潮率 信息融合 集成融合模型 电阻检测 回归预测模型
在线阅读 下载PDF
基于无人机多光谱图像和集成学习的橡胶树白粉病检测
4
作者 王勇 曾体伟 +3 位作者 徐秋 付威 付梦 张慧明 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第3期265-274,共10页
橡胶树是我国重要的热带经济作物,其生长过程中易受白粉病的侵染,准确、及时地监测橡胶树白粉病是防止其大规模蔓延的关键。近年来,无人机遥感技术在农林领域得到了广泛应用,本研究评估了采用低空遥感技术大规模检测橡胶树白粉病的可行... 橡胶树是我国重要的热带经济作物,其生长过程中易受白粉病的侵染,准确、及时地监测橡胶树白粉病是防止其大规模蔓延的关键。近年来,无人机遥感技术在农林领域得到了广泛应用,本研究评估了采用低空遥感技术大规模检测橡胶树白粉病的可行性,并致力于提高检测的准确性。基于大疆精灵4多光谱无人机获取橡胶树冠层多光谱图像,计算植被指数(VI)和纹理特征(TF),然后结合皮尔逊相关系数(PCCs)和Boruta-SHAP算法进行相关性分析和特征重要性分析,去除冗余特征,Blue-MEA、WI、DVIRE、PPR和GI被选为最佳特征组合,最后基于K近邻(KNN)、朴素贝叶斯(Bayes)、支持向量机(SVM)、随机森林(RF)、极端梯度提升(XGB)和Stacking集成算法构建橡胶树白粉病监测模型。结果表明:经特征筛选后,Stacking集成模型的准确率(OA)和Kappa(KC)值分别达到96.39%和92.78%,相比于5个单一基础模型KNN、Bayes、SVM、RF、XGB分类的效果,集成学习模型的准确率分别提高了3.15%、5.52%、1.80%、3.04%、1.14%,Kappa值提高了6.32%、11.05%、3.61%、6.09%、2.27%;在绘制橡胶树白粉病空间分布图时,使用17×17窗口大小的像素聚合策略分类准确率最高(OA=96.22%)。 展开更多
关键词 橡胶树白粉病 无人机 多光谱图像 遥感 集成学习模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部