期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
基于粒子群优化堆叠降噪自编码器的电力设备状态数据质量提升
1
作者 计蓉 侯慧娟 +3 位作者 盛戈皞 张立静 舒博 江秀臣 《上海交通大学学报》 北大核心 2025年第6期780-788,I0007,共10页
当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.... 当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.针对此问题,提出一种基于改进堆叠降噪自编码器的数据清洗方法.首先,采用粒子群算法优化堆叠降噪自编码器中的超参数;然后,利用堆叠降噪自编码器提取、还原数据特征的特点来进行数据清洗,实现对孤立点的修复和对空缺数据的填补,以有效提升电力设备状态数据的质量.所提方法简单高效,可以同时提高数据集的准确性和完整性.以电力设备的历史运行数据为例进行测试,算例结果表明所提方法相比于其他经典方法,数据清洗效果更好,且针对不同异常程度和运行状态的数据集都有良好的清洗效果,能够提高电力设备状态数据的质量. 展开更多
关键词 电力设备 状态数据 自编码器 数据清洗
在线阅读 下载PDF
基于优化堆叠降噪自编码器的水轮发电机组故障诊断
2
作者 肖发厚 钟波 +1 位作者 张彬桥 邹霖 《中国农村水利水电》 北大核心 2025年第8期119-125,共7页
针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimiz... 针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimization, HHO),即引入Sin混沌映射和莱维飞行策略以加速HHO算法的收敛速度和提高全局搜索效果;然后,提出改进的沙猫群算法(Sand Cat Swarm Optimization, SCSO),即融合反向学习和柯西变异策略弥补SCSO算法易陷入局部最优解的不足;最后,提出一种切换准测,将改进的HHO算法和改进的SCSO算法融合为HHO-SCSO混合智能算法,以实现两种算法的优势互补,从而弥补各自的不足之处。以水轮发电机组轴承故障诊断为例,采用西安交通大学提供的轴承摩擦实验数据集进行算法验证。实验结果表明,所提方法平均故障诊断准确率达到98.21%,相较于未优化SDAE网络,平均诊断准确率提高了8.19%。与现有水轮发电机组故障诊断方法相比,所提方法具有更好的诊断效率和更高的故障诊断准确率。 展开更多
关键词 自编码器 混合智能算法 水轮发电机组 故障诊断
在线阅读 下载PDF
基于改进金豺狼算法优化堆叠降噪自编码器的离心泵故障诊断方法
3
作者 张毛焕 张伟杰 徐树山 《计量学报》 北大核心 2025年第5期730-737,共8页
为解决堆叠降噪自动编码器(SDAE)超参数设置不合理而降低离心泵故障诊断精度的问题,选择了金豺狼优化算法(GJO)来优化SDAE超参数。考虑到GJO算法的性能受猎物逃脱能量影响较大的实际,设计了一种自适应逃脱能量策略,得到了自适应金豺狼... 为解决堆叠降噪自动编码器(SDAE)超参数设置不合理而降低离心泵故障诊断精度的问题,选择了金豺狼优化算法(GJO)来优化SDAE超参数。考虑到GJO算法的性能受猎物逃脱能量影响较大的实际,设计了一种自适应逃脱能量策略,得到了自适应金豺狼优化算法(AGJO)。利用AGJO对SDAE超参数进行优化选取,提出了基于AGJO-SDAE的离心泵故障诊断方法。离心泵典型故障诊断实例结果表明,相比于其它方法,AGJO-SDAE在平均诊断精度最少提高了1.03%,在标准差上最少降低了0.007,在耗时上最少减少了4.87 s;在2 dB、8 dB和14 dB噪声强度下,诊断精度相对衰减率最少分别降低了0.21%、1.01%和0.94%。 展开更多
关键词 故障诊断 自编码器 金豺狼优化算法 自适应逃脱能量 离心泵
在线阅读 下载PDF
基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断 被引量:6
4
作者 张彬桥 舒勇 江雨 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1408-1421,共14页
针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自... 针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自适应优化分解参数的改进VMD方法,并通过该指标筛选分解后的本征模态函数(IMF)分量;然后,为提取更全面的故障特征,引入新的复合缩放排列熵对各有效IMF的故障特征进行量化;最后,提出一种基于鼠群优化算法(RSO)与麻雀搜索算法(SSA)的混合算法优化SDAE网络超参数,将故障特征输入优化后SDAE网络中得到分类结果。采用美国CWRU轴承数据集进行验证,实验结果表明该方法能全面稳定地提取背景噪声下的故障特征,且与其他方法相比具有更好的抗噪性能和更高的故障诊断准确率。 展开更多
关键词 变分模态分解 综合评价指标 复合缩放排列熵 混合算法 自编码器
在线阅读 下载PDF
基于改进堆叠降噪自编码器的配电网高阻接地故障检测方法
5
作者 罗国敏 杨雪凤 +3 位作者 尚博阳 罗思敏 和敬涵 王小君 《电力系统保护与控制》 EI CSCD 北大核心 2024年第24期149-160,共12页
针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接... 针对配电网高阻故障判定阈值选取难、噪声影响大和识别精度低等问题,提出了一种基于改进堆叠降噪自编码器的高阻接地故障检测方法,从特征提取及网络模型两个层面增强检测方法的可靠性与抗噪性能。首先,结合时频数据处理手段刻画高阻接地故障与正常工况的物理特性差异,为构建故障样本特征库提供理论依据;其次,通过皮尔逊相关系数对时域、频域和时频域的故障特征进行分析与筛选,从而构造多域特征融合样本库,避免特征冗余现象;然后,利用极限学习机的强高维特征分类特性对堆叠降噪自编码器模型进行改进,以提高高阻接地故障分类器的鲁棒性和准确性;最后,在Matlab/Simulink中搭建10kV配电网仿真模型进行算例分析。结果表明,该方法在-1dB强噪声条件下仍有95.57%的高阻故障检测准确率,具有较高的工程实用价值。 展开更多
关键词 配电网 高阻接地故障 多域特征融合 自编码器 极限学习机
在线阅读 下载PDF
基于堆叠降噪自编码器的肝癌亚型分类 被引量:2
6
作者 张甜甜 赵庶旭 王小龙 《计算机应用与软件》 北大核心 2024年第6期79-84,共6页
肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大... 肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大量的冗余特征和较少的可用临床标签样本。堆叠降噪编码器(SDAE)是能够从海量数据中获取有效特征的高效模型,因此基于SDAE模型提出一种层次式堆叠降噪编码器,来学习肝癌的RNA表达、miRNA表达和DNA甲基化数据的特征并进行整合和识别。实验结果表明:Hi-SDAE方法提高了对肝癌亚型分类的准确度,为肝癌针对性治疗提供了更有价值的参考依据。 展开更多
关键词 自动编码器 数据 多组学整合 肝癌亚型
在线阅读 下载PDF
基于改进堆叠降噪自编码器的连铸机扇形段故障特征提取 被引量:1
7
作者 李国锋 但斌斌 +3 位作者 容芷君 都胜朝 肖浩 李冬冬 《武汉科技大学学报》 CAS 北大核心 2024年第2期129-136,共8页
为了提取连铸机扇形段在正常浇铸状态下的故障特征,设计一种利用鲸鱼优化算法(WOA)改进的堆叠降噪自编码器(SDAE)网络模型,命名为WOA-SDAE,并应用于扇形段拉矫力信号特征学习和故障分类。首先,从完整的浇铸周期中获取正常浇铸状态下的数... 为了提取连铸机扇形段在正常浇铸状态下的故障特征,设计一种利用鲸鱼优化算法(WOA)改进的堆叠降噪自编码器(SDAE)网络模型,命名为WOA-SDAE,并应用于扇形段拉矫力信号特征学习和故障分类。首先,从完整的浇铸周期中获取正常浇铸状态下的数据,对低频的拉矫力信号进行时域特征提取,将一维拉矫力信号转换为多维时域特征信号,并建立评价体系以寻找最优时域参数;其次,运用堆叠降噪自编码器与softmax分类器组成网络模型对故障信号进行分类,采用鲸鱼优化算法确定SDAE模型中隐含层层数与节点数。通过实际生产过程中的连铸机扇形段拉矫力信号来验证所提方法的可行性。试验结果表明,WOA-SDAE可有效提取扇形段的故障特征,在测试集上的识别准确率达到92.23%。 展开更多
关键词 连铸机扇形段 故障诊断 拉矫力信号 特征提取 自编码器 鲸鱼优化算法
在线阅读 下载PDF
基于堆叠降噪自编码网络和多源数据加权融合的发电机故障诊断方法
8
作者 邢超 马红升 +3 位作者 覃日升 张明强 鄢晶 刘焱 《高压电器》 北大核心 2025年第5期170-178,共9页
随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发... 随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发电机状态监测方法。首先,提出了一种基于加权D⁃S证据理论的SCADA⁃PMU数据融合方法;然后引入自动编码技术构建堆叠降噪自编码深度学习网络模型,提取训练数据集的深度特征,构建发电机故障检测模型;最后通过对重构误差进行平滑处理,结合自适应阈值检测状态监测量的趋势变化,实现故障判定。算例仿真结果表明,相比于基于单一数据源的传统方法,文中提出的方法具有更高的鲁棒性和精确性,从而有效提升了发电机故障诊断和状态监测的精细化水平。 展开更多
关键词 D⁃S证据理论 编码网络 故障诊断 状态检测
在线阅读 下载PDF
优化堆叠降噪自编码器用于调度操作票自动校验
9
作者 区伟健 徐策 +2 位作者 曾传凯 蒋宗祺 乐庆丰 《核电子学与探测技术》 CAS 北大核心 2024年第2期356-361,共6页
为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验... 为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验。实验结果表明,所提方法的操作票校验评估综合指标可达94.88%,是几种方法中最高的,具有一定的优势。 展开更多
关键词 自编码器 金豺狼优化算法 操作票 自动校验
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
10
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于改进堆叠稀疏降噪自编码器的轴承故障诊断 被引量:9
11
作者 张智恒 周凤星 +1 位作者 严保康 喻尚 《轴承》 北大核心 2021年第2期35-41,共7页
为提高堆叠稀疏降噪自编码器的性能,解决其计算复杂度高、收敛速度慢等问题,提出了一种基于堆叠边缘化稀疏降噪自编码器的滚动轴承故障诊断方法。首先,对稀疏降噪自编码器的损失函数进行边缘化处理,并结合逐层贪婪训练策略构建出SMSDAE... 为提高堆叠稀疏降噪自编码器的性能,解决其计算复杂度高、收敛速度慢等问题,提出了一种基于堆叠边缘化稀疏降噪自编码器的滚动轴承故障诊断方法。首先,对稀疏降噪自编码器的损失函数进行边缘化处理,并结合逐层贪婪训练策略构建出SMSDAE网络;然后,将SMSDAE网络与Softmax分类器结合,得到SMSDAE-Softmax特征提取模型;最后,将提取到的特征输入到SVM多分类器中完成对滚动轴承的智能故障诊断。QPZZ-Ⅱ旋转机械故障模拟试验平台所得故障信号的处理结果表明,该方法的平均故障诊断率达到了99.9%,相对于其他方法具备更快的收敛速度,更好的诊断效果,以及更强的鲁棒性。另外,采用美国西储大学轴承数据中心10种轴承故障信号进行分析,结果证明了该方法在面对不同类型轴承以及多种故障信号时具备良好的诊断性能,有一定的普适性。 展开更多
关键词 滚动轴承 故障诊断 边缘化稀疏自编码器 深度学习
在线阅读 下载PDF
基于堆叠稀疏自编码器的多缸喷油器堵塞定位算法
12
作者 王健 黄英 +3 位作者 高晓宇 王拓 王绪 惠嘉赫 《兵工学报》 EI CAS CSCD 北大核心 2024年第10期3706-3717,共12页
燃油喷射系统的工作质量直接影响柴油机工作过程及性能,针对多缸机不同喷油器发生堵塞故障且故障程度不一时,传统故障诊断方法难以精准定位故障喷油器的问题,提出一种基于堆叠稀疏自编码器(Stacked Sparse Autoencoder,SSAE)的故障定位... 燃油喷射系统的工作质量直接影响柴油机工作过程及性能,针对多缸机不同喷油器发生堵塞故障且故障程度不一时,传统故障诊断方法难以精准定位故障喷油器的问题,提出一种基于堆叠稀疏自编码器(Stacked Sparse Autoencoder,SSAE)的故障定位算法。通过SSAE提取不同喷油器发生堵塞故障时轨压信号的深层特征,以softmax网络实现故障部件定位。以一维轨压信号为输入,故障喷油器定位为输出,并研究算法超参数对算法精度的影响。研究结果表明,此算法能精准定位发生堵塞故障的喷油器,且精度不受堵塞程度的影响,故障诊断正确率可达96.7%。 展开更多
关键词 高压共轨 不同喷油器堵塞 稀疏自编码器 故障定位
在线阅读 下载PDF
基于堆叠降噪自动编码器的胶囊缺陷检测方法 被引量:16
13
作者 王宪保 何文秀 +2 位作者 王辛刚 姚明海 钱沄涛 《计算机科学》 CSCD 北大核心 2016年第2期64-67,共4页
目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通... 目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通过BP算法进行微调,得到训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测。实验表明,堆叠降噪自动编码器较好地建立了上述映射关系,能快速、准确地进行缺陷检测,对噪声具有很强的鲁棒性和稳定性。 展开更多
关键词 自动编码器 缺陷检测 深度学习
在线阅读 下载PDF
优化堆叠降噪自动编码器滚动轴承故障诊断 被引量:23
14
作者 余萍 曹洁 《太阳能学报》 EI CAS CSCD 北大核心 2021年第11期307-314,共8页
针对深度堆叠降噪自动编码器(SDAE)网络超参数采用经验枚举获得时存在的泛化能力较弱,且选参过程与设计人员经验有关,效率低等问题,利用新设计的人工变性天牛算法(ATLA)对SDAE网络超参数进行自适应选取,并确定网络结构,训练得到故障状... 针对深度堆叠降噪自动编码器(SDAE)网络超参数采用经验枚举获得时存在的泛化能力较弱,且选参过程与设计人员经验有关,效率低等问题,利用新设计的人工变性天牛算法(ATLA)对SDAE网络超参数进行自适应选取,并确定网络结构,训练得到故障状态的特征表示,最后输入到Softmax分类层进行故障检测,并确定故障类别。通过变工况下滚动轴承故障诊断仿真实验验证,该文所提出的ATLA-SDAE诊断方法在泛化性能、故障识别率等方面均优于BP神经网络、支持向量机(SVM)以及卷积神经网络(CNN)方法,能够从海量数据中自适应地提取更深层次的故障特征,可避免手动设计和提取故障特征的繁琐过程,更有利于提高故障分类的精度和诊断效率。 展开更多
关键词 风电机组 自动编码器 超参数 人工变性天牛算法 故障诊断 滚动轴承
在线阅读 下载PDF
基于改进正余弦算法优化堆叠降噪自动编码器的电机轴承故障诊断 被引量:22
15
作者 李兵 梁舒奇 +2 位作者 单万宁 曾文波 何怡刚 《电工技术学报》 EI CSCD 北大核心 2022年第16期4084-4093,共10页
轴承是电机的重要组成部分,其故障振动信号存在噪声干扰,导致特征提取困难,堆叠降噪自动编码器(SDAE)通过将输入数据随机置零训练网络可以有效抑制噪声干扰。此外,不理想的超参数组合易引起SDAE诊断性能不佳。因此,提出一种基于改进正... 轴承是电机的重要组成部分,其故障振动信号存在噪声干扰,导致特征提取困难,堆叠降噪自动编码器(SDAE)通过将输入数据随机置零训练网络可以有效抑制噪声干扰。此外,不理想的超参数组合易引起SDAE诊断性能不佳。因此,提出一种基于改进正余弦算法(ISCA)优化SDAE的电机轴承故障诊断方法。首先,在改进正余弦算法(SCA)粒子值更新公式中引入非线性惯性权重并对控制参数加入余弦变化构造ISCA,利用ISCA对SDAE超参数自适应选取;其次,利用具有最优网络结构的SDAE模型的无监督自学习特征提取方法提取振动信号特征参数,从而实现更好的故障诊断效果。仿真及现场实验结果表明,该方法收敛速度快、诊断准确率高,而且具有较强的鲁棒性,在电机轴承故障诊断方面具有较好的应用前景。 展开更多
关键词 自动编码器 改进正余弦算法 电机轴承 故障诊断 自适应
在线阅读 下载PDF
基于堆叠稀疏降噪自编码器的暂态稳定评估模型 被引量:5
16
作者 温涛 张敏 王怀远 《电力工程技术》 北大核心 2022年第1期207-212,共6页
深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样... 深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样本,然后对受损数据样本进行高阶特征提取,最后将提取的高阶特征重构成未受损的数据,这一训练过程大大提高了模型的抗噪能力。同时,在对输入特征进行重构的过程中,对隐藏层神经元权重和激活程度进行抑制,实现模型的稀疏化,以此提高模型的泛化能力。仿真结果表明,相对于其他机器学习算法,SSDAE模型具有良好的抗噪能力和泛化能力。 展开更多
关键词 深度学习 稀疏自编码器(SSDAE) 暂态稳定 声能力 泛化能力 机器学习
在线阅读 下载PDF
改进沙猫群优化算法优化堆叠降噪自动编码器的发动机故障诊断 被引量:7
17
作者 蒋开正 吕丽平 《机械设计》 CSCD 北大核心 2023年第8期56-62,共7页
车辆发动机振动信号受到噪声干扰,影响故障诊断精度,而堆叠降噪自动编码器(SDAE)可以有效抑制噪声干扰,但SDAE模型超参数对诊断性能影响较大,不合理的模型超参数容易引起SDAE诊断性能不佳。因此,文中采用一种新型沙猫群优化算法(SCSO)对... 车辆发动机振动信号受到噪声干扰,影响故障诊断精度,而堆叠降噪自动编码器(SDAE)可以有效抑制噪声干扰,但SDAE模型超参数对诊断性能影响较大,不合理的模型超参数容易引起SDAE诊断性能不佳。因此,文中采用一种新型沙猫群优化算法(SCSO)对SDAE参数进行优化选取。考虑到沙猫群优化算法(SCSO)中沙猫群种群缺乏变异机制的缺陷,在其探索阶段和开发阶段分别引入柯西变异机制和高斯变异机制,得到了改进沙猫群优化算法(ISCSO),并提出了SCSO优化SDAE的发动机故障诊断方法。发动机故障诊断实例结果表明:与其余5种方法相比,所提方法的平均诊断精度提高了1.47%~6.5%,平均耗时缩短了5.29~19.44 s。 展开更多
关键词 自动编码器 沙猫群优化算法 柯西变异 高斯变异 发动机 故障诊断
在线阅读 下载PDF
基于改进的堆叠降噪自动编码器深度模型的转子-转轴系统故障诊断方法 被引量:9
18
作者 姜万录 李金虎 +1 位作者 李振宝 姜安琦 《机床与液压》 北大核心 2020年第21期182-188,196,共8页
旋转机械转子-转轴系统故障诊断方法中大多采用传统浅层模型,对于数量较大的样本其处理能力有限。为解决此问题,提出一种利用改进的堆叠降噪自动编码器(SDAE)深度模型的故障诊断方法,并对转子-转轴系统的典型故障进行诊断。利用某机械... 旋转机械转子-转轴系统故障诊断方法中大多采用传统浅层模型,对于数量较大的样本其处理能力有限。为解决此问题,提出一种利用改进的堆叠降噪自动编码器(SDAE)深度模型的故障诊断方法,并对转子-转轴系统的典型故障进行诊断。利用某机械故障综合模拟实验台,结合基于LabVIEW开发的信号采集系统模拟并采集转子-转轴系统的10类单一故障和7类复合故障振动信号。在训练SDAE模型时引入Dropout机制对模型进行改进,并结合Softmax分类器进行网络训练与诊断。与传统BP网络、自动编码器(AE)、无Dropout机制的SDAE和卷积神经网络(CNN)进行对比,结果表明:改进的SDAE方法对于转子-转轴系统故障的正确识别率最高,特别是对复合故障的诊断效果比其他模型更理想,充分验证了改进的SDAE深度模型的优越性。 展开更多
关键词 故障诊断 深度模型 自动编码器 Dropout机制
在线阅读 下载PDF
融合稀疏因子的情感分析堆叠降噪自编码器模型 被引量:1
19
作者 蒋宗礼 王一大 《计算机科学》 CSCD 北大核心 2017年第12期227-231,共5页
基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含... 基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含噪声和稀疏性对特征抽取的影响。使用COAE评测数据集进行的情感分析实验表明所提模型分类的准确率和召回率都有所提高。 展开更多
关键词 深度学习 自编码器 稀疏因子 情感分析
在线阅读 下载PDF
基于堆叠降噪自编码器的神经–符号模型及在晶圆表面缺陷识别 被引量:7
20
作者 刘国梁 余建波 《自动化学报》 EI CAS CSCD 北大核心 2022年第11期2688-2702,共15页
深度神经网络是具有复杂结构和多个非线性处理单元的模型,通过模块化的方式分层从数据提取代表性特征,已经在晶圆缺陷识别领域得到了较为广泛的应用.但是,深度神经网络在应用过程中本身存在“黑箱”和过度依赖数据的问题,显著地影响深... 深度神经网络是具有复杂结构和多个非线性处理单元的模型,通过模块化的方式分层从数据提取代表性特征,已经在晶圆缺陷识别领域得到了较为广泛的应用.但是,深度神经网络在应用过程中本身存在“黑箱”和过度依赖数据的问题,显著地影响深度神经网络在晶圆缺陷识别的工业可应用性.提出一种基于堆叠降噪自编码器的神经–符号模型.首先,根据堆叠降噪自编码器的网络特点采用了一套符号规则系统,规则形式和组成结构使其可与深度神经网络有效融合.其次,根据网络和符号规则之间的关联性提出完整的知识抽取与插入算法,实现了深度网络和规则之间的知识转换.在实际工业晶圆表面图像数据集WM-811K上的试验结果表明,基于堆叠降噪自编码器的神经–符号模型不仅取得了较好的缺陷探测与识别性能,而且可有效提取规则并通过规则有效描述深度神经网络内部计算逻辑,综合性能优于目前经典的深度神经网络. 展开更多
关键词 晶圆表面缺陷 深度学习 自编码器 符号规则 知识发现
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部