期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于堆叠自编码网络的风电机组发电机状态监测与故障诊断 被引量:58
1
作者 赵洪山 刘辉海 +1 位作者 刘宏杨 林酉阔 《电力系统自动化》 EI CSCD 北大核心 2018年第11期102-108,共7页
为实现风力发电机的异常检测分析,提出了一种基于风电机组发电机正常状态下数据采集与监控(SCADA)样本数据的堆叠自编码网络深度学习方法。首先将多个自编码网络连接构成深度堆叠自编码网络,选取发电机SCADA状态变量数据作为网络的训练... 为实现风力发电机的异常检测分析,提出了一种基于风电机组发电机正常状态下数据采集与监控(SCADA)样本数据的堆叠自编码网络深度学习方法。首先将多个自编码网络连接构成深度堆叠自编码网络,选取发电机SCADA状态变量数据作为网络的训练输入,使网络逐层智能提取数据间的分布式规则,从而构建发电机的堆叠自编码学习模型。依据故障状态下发电机SCADA数据内部动态平衡规则被破坏,利用发电机深度学习网络的输入与重构值计算重构误差,并作为整体状态的观测量。通过采用自适应阈值检测重构误差的状态趋势变化,并作为异常预警判定准则,从而实现对发电机故障的判定。当发电机发生异常时,变量的实际值与对应模型的重构值发生较大偏差,表现为状态变量的残差趋势将会偏离原有的动态稳定状态。因此利用状态变量的残差趋势变化对异常变量进行隔离,判定可能的故障原因达到故障诊断的目的。通过对发电机故障前后记录数据进行仿真分析,结果验证了堆叠自编码网络深度学习方法对发电机状态监测与故障诊断的有效性。 展开更多
关键词 风电机组 深度学习 堆叠自编码 状态监测 故障诊断
在线阅读 下载PDF
堆叠自编码网络性能优化及其在滚动轴承故障诊断中的应用 被引量:34
2
作者 张西宁 向宙 +1 位作者 夏心锐 李立帆 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第10期49-56,87,共9页
为了解决堆叠自编码网络在参数较多时的梯度弥散问题,对网络每层的编码值进行了统计分析,发现大部分分布于激活函数的饱和区,这直接导致了神经元权值梯度的消失。为此,引入了一种标准化策略,将神经元按照样本进行归一化,然后引入两个待... 为了解决堆叠自编码网络在参数较多时的梯度弥散问题,对网络每层的编码值进行了统计分析,发现大部分分布于激活函数的饱和区,这直接导致了神经元权值梯度的消失。为此,引入了一种标准化策略,将神经元按照样本进行归一化,然后引入两个待学习参数进行缩放和平移,最后通过激活函数输出到下一级神经元。运用带标准化的堆叠自编码网络进行滚动轴承故障诊断,将振动信号的频谱输入到网络中。与普通堆叠自编码网络相比,该标准化策略可有效地使网络编码值均匀分布,如将第一层编码值的熵从0.88bit提高到了16.29bit。带标准化的堆叠自编码网络可有效提高网络的抗噪能力和训练速度:在凯斯西储大学滚动轴承数据集上,当人为添加噪声信号的信噪比为0dB时,识别正确率从16.18%提高到了100%;在实验室实测数据集上,不仅训练时间下降了37.22%,而且识别正确率从97.93%提高到了99.95%。对网络的编码值进行分析以及引入的标准化策略,可为科研技术人员构建堆叠自编码网络时提供参考,也为滚动轴承故障诊断提供了一种策略。 展开更多
关键词 故障诊断 堆叠自编码网络 标准化 滚动轴承
在线阅读 下载PDF
基于批标准化的堆叠自编码网络风电机组变桨系统故障诊断 被引量:7
3
作者 王思华 王恬 +3 位作者 周丽君 王宇 陈天宇 赵珊鹏 《太阳能学报》 EI CAS CSCD 北大核心 2022年第2期394-401,共8页
为了提高风电机组变桨系统故障诊断的准确性,提出一种基于批标准化的堆叠自编码(SAE)网络故障诊断模型。针对SAE网络在特征学习过程出现的梯度硬饱和问题,选用PReLU激活函数,在SAE网络中加入批标准化(BN)层进行优化,通过输出层的Softma... 为了提高风电机组变桨系统故障诊断的准确性,提出一种基于批标准化的堆叠自编码(SAE)网络故障诊断模型。针对SAE网络在特征学习过程出现的梯度硬饱和问题,选用PReLU激活函数,在SAE网络中加入批标准化(BN)层进行优化,通过输出层的Softmax函数,得到变桨系统各部件故障发生概率。以均方误差最小化为目标,采用Adam算法迭代训练数据,使模型参数得到更新。在风电机组变桨系统数据采集与监视控制(SCADA)系统中的数据集中,对优化前后的SAE网络通过改变迭代次数、样本数量进行实验,结果表明,优化后的SAE网络模型具有更好的识别精度;另外,在不同样本数量的实验中,与其他传统模型相比,优化后的SAE网络模型故障识别率也更高,表明其在风电机组故障诊断领域有一定的应用价值。 展开更多
关键词 风电机组 变桨系统 故障诊断 批标准化 堆叠自编码
在线阅读 下载PDF
基于滑动窗口-KL散度和改进堆叠自编码的轴承故障诊断 被引量:7
4
作者 杨锡运 吕微 +1 位作者 王灿 李韶武 《机床与液压》 北大核心 2021年第17期179-184,共6页
针对风力发电机组的发电机轴承故障诊断问题,提出基于滑动窗口-KL散度和改进堆叠自编码的深度学习网络故障诊断模型。采用改进的变学习速率的堆叠自编码器进行发电机轴承温度状态重构。利用滑动窗口-KL散度算法进行发电机轴承的故障诊断... 针对风力发电机组的发电机轴承故障诊断问题,提出基于滑动窗口-KL散度和改进堆叠自编码的深度学习网络故障诊断模型。采用改进的变学习速率的堆叠自编码器进行发电机轴承温度状态重构。利用滑动窗口-KL散度算法进行发电机轴承的故障诊断,诊断结果与欧氏距离和3σ准则故障诊断结果进行对比。结果表明:采用滑动窗口-KL散度算法进行故障诊断准确率高、误报率低。 展开更多
关键词 发电机轴承 改进堆叠自编码 滑动窗口 KL散度 故障诊断
在线阅读 下载PDF
基于改进堆叠自编码网络的电站辅机故障预警 被引量:20
5
作者 李晓彬 牛玉广 +2 位作者 葛维春 罗桓桓 周桂平 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第6期39-47,共9页
为了提高对辅机故障的事前预知能力,结合深度学习中非监督学习方法的优势,提出基于改进堆叠自编码网络的电站辅机故障预警方法。该方法以辅机的历史正常数据为训练集,利用堆叠自编码(SAE)网络的非线性表达能力表示辅机各变量之间的关系... 为了提高对辅机故障的事前预知能力,结合深度学习中非监督学习方法的优势,提出基于改进堆叠自编码网络的电站辅机故障预警方法。该方法以辅机的历史正常数据为训练集,利用堆叠自编码(SAE)网络的非线性表达能力表示辅机各变量之间的关系,同时引入批标准化(BN)算法优化网络性能。对于输入的观测向量,SAE网络给出相应的重构向量。构造基于融合距离的相似度表示观测向量与重构向量间的偏差,当辅机开始偏离正常状态时,观测值与重构值偏差增大,相似度下降至预警阈值即表明设备出现故障。分别利用某热电机组中速磨煤机的正常数据与故障数据进行测试与验证,结果显示引入BN算法的SAE网络具有更低的重构误差,同时能够在磨煤机跳闸前做出预警,表明该方法可对辅机故障进行有效预警,具有一定的工程应用价值。 展开更多
关键词 堆叠自编码网络 批标准化 网络性能优化 电站辅机 故障预警
在线阅读 下载PDF
基于改进堆叠自编码网络的电站辅机故障预警 被引量:2
6
作者 李晓彬 牛玉广 +2 位作者 葛维春 罗桓桓 周桂平 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第7期55-63,共9页
为了提高对辅机故障的事前预知能力,结合深度学习中非监督学习方法的优势,提出基于改进堆叠自编码网络的电站辅机故障预警方法。以辅机的历史正常数据为训练集,利用堆叠自编码(SAE)网络的非线性表达能力表示辅机各变量之间的关系,同时... 为了提高对辅机故障的事前预知能力,结合深度学习中非监督学习方法的优势,提出基于改进堆叠自编码网络的电站辅机故障预警方法。以辅机的历史正常数据为训练集,利用堆叠自编码(SAE)网络的非线性表达能力表示辅机各变量之间的关系,同时引入批标准化(BN)算法优化网络性能。对于输入的观测向量,SAE网络给出相应的重构向量。构造基于融合距离的相似度表示观测向量与重构向量间的偏差,当辅机开始偏离正常状态时,观测值与重构值偏差增大,相似度下降至预警阈值即表明设备出现故障。分别利用某热电机组中速磨煤机的正常数据与故障数据进行测试与验证,结果显示引入BN算法的SAE网络具有更低的重构误差,同时能够在磨煤机跳闸前做出预警,表明所提方法可对辅机故障进行有效预警,具有一定的工程应用价值。 展开更多
关键词 堆叠自编码网络 批标准化 网络性能优化 电站辅机 故障预警
在线阅读 下载PDF
一种基于堆叠自编码器的WiFi室内定位算法 被引量:2
7
作者 马佩勋 《导航定位学报》 CSCD 2021年第3期55-59,85,共6页
由于室内无线保真(WiFi)可随处接入,基于WiFi指纹的室内定位算法得到广泛关注。然而,由于噪声和无线信号的不稳定性,基于WiFi指纹的室内定位算法的定位精度并不高。为此,提出基于堆叠自编码器的WiFi室内定位(SDIL)算法。SDIL算法结合堆... 由于室内无线保真(WiFi)可随处接入,基于WiFi指纹的室内定位算法得到广泛关注。然而,由于噪声和无线信号的不稳定性,基于WiFi指纹的室内定位算法的定位精度并不高。为此,提出基于堆叠自编码器的WiFi室内定位(SDIL)算法。SDIL算法结合堆叠去噪声自编码深度学习模型和贝叶斯推断处理WiFi信号内的噪声,并捕获WiFi接入点信号与其位置间的复杂关系。实验结果表明,SDIL算法能够在室内达到米级的平均定位精度。 展开更多
关键词 室内定位 无线保真 深度学习 去噪声自编码 贝叶斯推断
在线阅读 下载PDF
基于堆叠降噪自编码网络和多源数据加权融合的发电机故障诊断方法
8
作者 邢超 马红升 +3 位作者 覃日升 张明强 鄢晶 刘焱 《高压电器》 北大核心 2025年第5期170-178,共9页
随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发... 随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发电机状态监测方法。首先,提出了一种基于加权D⁃S证据理论的SCADA⁃PMU数据融合方法;然后引入自动编码技术构建堆叠降噪自编码深度学习网络模型,提取训练数据集的深度特征,构建发电机故障检测模型;最后通过对重构误差进行平滑处理,结合自适应阈值检测状态监测量的趋势变化,实现故障判定。算例仿真结果表明,相比于基于单一数据源的传统方法,文中提出的方法具有更高的鲁棒性和精确性,从而有效提升了发电机故障诊断和状态监测的精细化水平。 展开更多
关键词 D⁃S证据理论 降噪自编码网络 故障诊断 状态检测
在线阅读 下载PDF
基于堆叠降噪自编码的刀具磨损状态识别 被引量:23
9
作者 王丽华 杨家巍 +2 位作者 张永宏 赵晓平 谢阳阳 《中国机械工程》 EI CAS CSCD 北大核心 2018年第17期2038-2045,共8页
提出了一种基于堆叠降噪自编码(SDAE)的刀具磨损状态识别方法。构建了SDAE神经网络来学习声发射(AE)信号的特征,并对自编码网络进行有监督的微调,从而对刀具磨损状态进行精确识别。实验结果表明,SDAE方法能够自适应地学习,得到有效的特... 提出了一种基于堆叠降噪自编码(SDAE)的刀具磨损状态识别方法。构建了SDAE神经网络来学习声发射(AE)信号的特征,并对自编码网络进行有监督的微调,从而对刀具磨损状态进行精确识别。实验结果表明,SDAE方法能够自适应地学习,得到有效的特征表达,且刀具磨损状态识别结果精确度高,该方法能够有效地进行刀具磨损状态识别。 展开更多
关键词 刀具磨损 声发射 深度学习 降噪自编码
在线阅读 下载PDF
基于堆叠稀疏自编码的滚动轴承故障诊断 被引量:12
10
作者 侯荣涛 周子贤 +2 位作者 赵晓平 谢阳阳 王丽华 《轴承》 北大核心 2018年第3期49-54,60,共7页
针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最... 针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最终将特征输入softmax分类器实现滚动轴承健康状况精确诊断。在动力传动故障诊断试验台采集了5类轴承故障数据进行测试。试验结果表明:SSAE算法能够有效地提取故障特征,且故障诊断效果优于传统智能诊断方法。 展开更多
关键词 滚动轴承 深度学习 稀疏自编码算法 故障诊断
在线阅读 下载PDF
基于堆叠稀疏自编码的模糊C-均值聚类算法 被引量:9
11
作者 段宝彬 韩立新 谢进 《计算机工程与应用》 CSCD 北大核心 2015年第4期154-157,共4页
针对模糊C-均值聚类算法对孤立点、随机初始化的聚类中心比较敏感的问题,将堆叠稀疏自编码与传统模糊C-均值聚类算法相结合,对传统模糊C-均值聚类算法进行了改进。由于堆叠稀疏自编码可以提取原始数据集从低层到高层的特征,而高层的特... 针对模糊C-均值聚类算法对孤立点、随机初始化的聚类中心比较敏感的问题,将堆叠稀疏自编码与传统模糊C-均值聚类算法相结合,对传统模糊C-均值聚类算法进行了改进。由于堆叠稀疏自编码可以提取原始数据集从低层到高层的特征,而高层的特征通常比原始数据集更能反映待聚类样本的本质特征,用其代替原始数据集进行聚类,有助于提高聚类的效果。利用改进后的算法在UCI的几个标准数据集上进行实验,结果表明改进后的算法是有效可行的。 展开更多
关键词 稀疏自编码 模糊C-均值聚类 特征 深度学习
在线阅读 下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
12
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于堆叠降噪自编码机的广告博文识别方法
13
作者 赵晓乐 栾杰 +2 位作者 冯旭鹏 刘利军 黄青松 《小型微型计算机系统》 CSCD 北大核心 2018年第9期1921-1926,共6页
在针对广告博文进行识别过程中,首先构建文本特征向量和人工定义的特征向量,使用堆叠降噪自编码机对这两种特征向量进行处理,获得处理后的两种特征向量,然后将得到的这两种特征向量进行组合得到第三种特征向量.最后将这三种特征向量用... 在针对广告博文进行识别过程中,首先构建文本特征向量和人工定义的特征向量,使用堆叠降噪自编码机对这两种特征向量进行处理,获得处理后的两种特征向量,然后将得到的这两种特征向量进行组合得到第三种特征向量.最后将这三种特征向量用于最大熵分类模型的训练,依据实验结果找出分类效果最好的模型,使用该模型对博文进行处理过滤掉其中的广告博文,实验证明得到的最大熵分类模型的P、R、F可达到65.58%、87.9%、75.12%,能有效识别绝大多数的广告博文. 展开更多
关键词 广告博文 特征向量 降噪自编码 最大熵 分类 过滤
在线阅读 下载PDF
基于改进堆叠去噪自编码的接地故障选线方法
14
作者 常宛露 许刚 +2 位作者 张丙旭 郑伟彦 俞腾飞 《计算机应用与软件》 北大核心 2020年第7期49-55,60,共8页
针对小电流接地系统单相接地故障时受噪声干扰、故障类型和数据样本数量等影响造成选线精度低的问题,提出一种基于改进堆叠去噪自编码的选线方法。根据故障零序电流分布特征,提出信号-图像转换的预处理方法以在无须预定义参数的情况下... 针对小电流接地系统单相接地故障时受噪声干扰、故障类型和数据样本数量等影响造成选线精度低的问题,提出一种基于改进堆叠去噪自编码的选线方法。根据故障零序电流分布特征,提出信号-图像转换的预处理方法以在无须预定义参数的情况下提取原始故障信号的二维特征;通过常数项惩罚样本之间度量距离并作为正则化项限制目标函数的方法改进堆叠去噪自编码网络,提高模型特征学习性能并减少模型训练所需样本数量;通过改进模型实现故障特征自动提取与选线。仿真实验验证了该方法在不同单相接地故障条件下的有效性,并且选线精度高于传统的深度学习方法。 展开更多
关键词 单相接地故障 信号-图像转换 度量距离 去噪自编码
在线阅读 下载PDF
基于类编码的判别特征学习
15
作者 徐德荣 陈秀宏 田进 《计算机工程与科学》 CSCD 北大核心 2018年第3期555-563,共9页
经典的自编码模型(BAE、SAE、DAE、CAE)都是基于输出数据对原始数据的重构,提取输入信息的低维度特征,将该特征用于图像分类不一定能够取得很好的判别效果。利用标签信息,提出了堆叠判别自编码模型(SDcAE),该模型将类编码作为隐层神经... 经典的自编码模型(BAE、SAE、DAE、CAE)都是基于输出数据对原始数据的重构,提取输入信息的低维度特征,将该特征用于图像分类不一定能够取得很好的判别效果。利用标签信息,提出了堆叠判别自编码模型(SDcAE),该模型将类编码作为隐层神经元约束加入到堆叠自编码器的训练中,使得隐层学习的特征具有更好的判别能力。同时,将类编码作为判别损失加入到Softmax分类器中,提出了类编码分类器(CEC)。由于类间样本特征误差的降低,该分类器可以取得更好的训练效果,从而提高了最终分类的正确率。实验表明,堆叠判别自编码器和类编码分类器在图像分类中是有效可行的。 展开更多
关键词 编码 判别自编码 编码分类器 图像分类
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
16
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于SDAE的终端区气象场景模式识别方法
17
作者 杨新湦 罗秋晴 张召悦 《河南科技大学学报(自然科学版)》 北大核心 2024年第2期96-104,M0008,共10页
气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场... 气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场景的模式识别。以天津滨海国际机场2022年气象观测数据为例,基于SDAE与欧氏距离、汉明距离、曼哈顿距离等传统相似性距离度量方法,分别使用K-medoids与FCM两种聚类方法进行验证。结果表明:基于SDAE的相似性度量在K-medoids与FCM聚类中均表现最优,与其他相似性度量相比差异率分别达到22.4%,12%,17.7%与24.8%,10.7%,11.8%,且运算时间最短,证明了基于SDAE的度量、聚类效果最优,最终识别出8个气象场景,各场景分类清晰明确。 展开更多
关键词 气象特征 降噪自编码 K-medoids FCM
在线阅读 下载PDF
SDAEC算法在单细胞测序数据批次校正中的应用
18
作者 王文杰 李康 谢宏宇 《中国卫生统计》 CSCD 北大核心 2024年第4期501-506,共6页
目的 提出深度堆叠降噪自编码嵌套聚类(stacked denoising auto encoder embedded cluster, SDAEC)算法并用于单细胞mRNA测序(single cell mRNA sequence, scRNA-seq)数据的批次效应移除,对其移除批次效应性能进行评估。方法 基于单细... 目的 提出深度堆叠降噪自编码嵌套聚类(stacked denoising auto encoder embedded cluster, SDAEC)算法并用于单细胞mRNA测序(single cell mRNA sequence, scRNA-seq)数据的批次效应移除,对其移除批次效应性能进行评估。方法 基于单细胞数据具有高维度、高稀疏性及高度非线性误差特点,通过将单细胞Louvain聚类算法嵌入堆叠降噪自动编码器(stacked denoising auto encoder, SDAE)算法中,形成SDAEC算法,用于单细胞测序数据的批次效应移除。结合实际卵巢癌组织scRNA-seq数据,利用分布邻域嵌入(t-distributed stochastic neighbor embedding, tSNE)、 k最近邻批次效应检测(k-nearest-neighbor batch-effect test, kBET)、调整兰德系数(adjusted rand index, ARI)、标准化互信息(normalized mutual information, NMI)、平均轮廓宽度(average silhouette width, ASW)评价其移除批次效应性能。结果 利用SDAEC方法对scRNA-seq数据批次效应移除性能高于Combat、相互最近邻(mutual nearest neighbors, MNN)、分布匹配残差网络(maximum mean discrepancy distribution-matching residual networks, MMD-ResNet)和基于零膨胀负二项的方差提取法(zero-inflated negative binomial-based wanted variation extraction, ZINB-WaVE)。结论 SDAEC算法能够移除scRNA-seq数据的批次效应,提高scRNA-seq数据下游分析的有效性,具有实际应用价值。 展开更多
关键词 深度降噪自编码嵌套聚类 单细胞测序 批次效应 卵巢癌
在线阅读 下载PDF
基于SAE-SA-1D-CNN-BGRU的涡扇发动机剩余寿命预测 被引量:1
19
作者 聂磊 蔡文涛 +3 位作者 张吕凡 徐诗奕 吴柔慧 任一竹 《航空发动机》 北大核心 2023年第4期134-139,共6页
为解决涡扇发动机监测数据维度高和寿命预测准确度低的问题,提出一种基于深度学习的寿命预测方法,开展了利用神经网络获取涡扇发动机剩余寿命的研究。利用堆叠自编码(SAE)网络从高维传感器数据中提取健康因子(HI),采用1维卷积神经网络-... 为解决涡扇发动机监测数据维度高和寿命预测准确度低的问题,提出一种基于深度学习的寿命预测方法,开展了利用神经网络获取涡扇发动机剩余寿命的研究。利用堆叠自编码(SAE)网络从高维传感器数据中提取健康因子(HI),采用1维卷积神经网络-双向门控循环单元(1D-CNN-BGRU)方法捕捉HI序列中的空间和时间特征,并引入自注意(SA)机制对捕捉的特征分配权重,使用全连接层输出涡扇发动机剩余使用寿命(RUL),以此构建复合神经网络进行面向涡扇发动机高维数据的寿命预测。结果表明:利用NASA官方网站提供的涡扇发动机寿命试验公开数据集C-MAPSS对该方法进行验证,取得了均方根误差16.22和评分函数225的结果。证明了基于SAE-SA-1D-CNN-BGRU的寿命预测方法可实现涡扇发动机寿命的有效预测,能为涡扇发动机维修保障及健康管理提供有效决策支撑。 展开更多
关键词 剩余使用寿命 堆叠自编码网络 1维卷积神经网络 双向门控循环单元 涡扇发动机 智能运维 深度学习
在线阅读 下载PDF
基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究 被引量:48
20
作者 石怀涛 尚亚俊 +2 位作者 白晓天 郭磊 马辉 《振动与冲击》 EI CSCD 北大核心 2021年第18期286-297,共12页
针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线... 针对滚动轴承的早期故障特征较弱,在强噪声背景下难以有效提取以致生命周期很难准确预测的问题,提出了一种基于贝叶斯优化(BO)的滑动窗堆叠去噪自编码器(SWDAE)和长短期记忆(LSTM)网络的早期故障预测模型。使用滑动窗算法保留具有非线性特征和时序特征的历史正常数据,输入到模型中进行训练,使模型学习滚动轴承的正常运行状态趋势。将滚动轴承运行的数据输入到训练好的SWDAE-LSTM模型中进行实时在线监控,利用模型的预测值与真实值的残差检测滚动轴承早期故障。针对模型超参数组合选择困难的问题,使用贝叶斯优化算法对模型的超参数进行调优。最后,使用美国辛辛那提大学智能维护中心(IMSCenter)的轴承全生命周期数据以及机械故障综合模拟实验装置获取的数据进行仿真实验验证。结果表明,使用贝叶斯优化算法进行智能调参的模型和基于时域指标的方法对比,可以更早的有效检测出滚动轴承的早期故障并具有很强的鲁棒性。与其余深度学习方法比较,其模型的诊断准确率高于其他方法,进一步证明了其有效性和可靠性。 展开更多
关键词 滚动轴承 早期故障预测 贝叶斯优化(BO) 滑动窗算法 去噪自编码(SWDAE) 长短时记忆(LSTM)网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部