期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于自编码器降维的神经卷积网络入侵检测模型
1
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 稀疏编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
深度学习模式下大数据特征集成分类算法
2
作者 彭建祥 《吉林大学学报(信息科学版)》 2025年第2期231-237,共7页
由于大数据通常来自不同的数据源,具有不同的格式、结构和质量,且其中包含大量的冗余特征,因而在进行特征集成分类时,这些因素均会影响数据分类精度,为此,设计一种深度学习模式下大数据特征集成分类算法。基于深度学习模式建立医疗大数... 由于大数据通常来自不同的数据源,具有不同的格式、结构和质量,且其中包含大量的冗余特征,因而在进行特征集成分类时,这些因素均会影响数据分类精度,为此,设计一种深度学习模式下大数据特征集成分类算法。基于深度学习模式建立医疗大数据特征提取模型,针对模型训练过程中会引入大量噪声,特征提取结果含有部分无关特征信息,影响特征集成分类结果的问题,采用堆叠稀疏降噪编码器抑制无关特征,即使用散度函数、贪婪算法找出训练最佳参数,运用损失函数将特征空间无关特征稀疏掉,得到实际数据特征。通过Auto-encoder网络搭建特征集成分类模型,借助类型约束函数、目标函数得出各类全局最佳集成中心,完成数据特征集成分类。实验结果表明,所提方法在医疗大数据的分类中得到很好效果,宏平均值在0.95以上,且分类速度快,表明所提方法的分类性能较好。 展开更多
关键词 深度学习 医疗大数据 特征集成 堆叠稀疏降噪编码器 集成中心
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部