期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于堆叠稀疏自编码的滚动轴承故障诊断 被引量:12
1
作者 侯荣涛 周子贤 +2 位作者 赵晓平 谢阳阳 王丽华 《轴承》 北大核心 2018年第3期49-54,60,共7页
针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最... 针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最终将特征输入softmax分类器实现滚动轴承健康状况精确诊断。在动力传动故障诊断试验台采集了5类轴承故障数据进行测试。试验结果表明:SSAE算法能够有效地提取故障特征,且故障诊断效果优于传统智能诊断方法。 展开更多
关键词 滚动轴承 深度学习 堆叠稀疏自编码算法 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部