期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于堆叠稀疏自编码器的多缸喷油器堵塞定位算法
1
作者 王健 黄英 +3 位作者 高晓宇 王拓 王绪 惠嘉赫 《兵工学报》 EI CAS CSCD 北大核心 2024年第10期3706-3717,共12页
燃油喷射系统的工作质量直接影响柴油机工作过程及性能,针对多缸机不同喷油器发生堵塞故障且故障程度不一时,传统故障诊断方法难以精准定位故障喷油器的问题,提出一种基于堆叠稀疏自编码器(Stacked Sparse Autoencoder,SSAE)的故障定位... 燃油喷射系统的工作质量直接影响柴油机工作过程及性能,针对多缸机不同喷油器发生堵塞故障且故障程度不一时,传统故障诊断方法难以精准定位故障喷油器的问题,提出一种基于堆叠稀疏自编码器(Stacked Sparse Autoencoder,SSAE)的故障定位算法。通过SSAE提取不同喷油器发生堵塞故障时轨压信号的深层特征,以softmax网络实现故障部件定位。以一维轨压信号为输入,故障喷油器定位为输出,并研究算法超参数对算法精度的影响。研究结果表明,此算法能精准定位发生堵塞故障的喷油器,且精度不受堵塞程度的影响,故障诊断正确率可达96.7%。 展开更多
关键词 高压共轨 不同喷油器堵塞 稀疏自编码器 故障定位
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
2
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于堆叠自动编码器的网络行为识别 被引量:4
3
作者 刘任熊 田由辉 张朝龙 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2019年第2期189-194,共6页
网络行为识别一直是网络安全中的研究热点,随着网络中数据量的海量增大以及数据的非线性等问题的影响,对于网络行为识别的特征提取和识别技术提出更高的要求。文章提出了一种基于堆叠自动编码器的网络行为识别方法,该方法通过构建堆叠... 网络行为识别一直是网络安全中的研究热点,随着网络中数据量的海量增大以及数据的非线性等问题的影响,对于网络行为识别的特征提取和识别技术提出更高的要求。文章提出了一种基于堆叠自动编码器的网络行为识别方法,该方法通过构建堆叠自动编码器和SOFTMAX分类器的深度学习框架,结合无监督的预训练和有监督的全局微调,优化堆叠自动编码器的特征提取性能,实现了网络行为特征的深度提取,从而对高校流量数据中上网行为进行分析识别。 展开更多
关键词 网络行为 识别 特征提取 深度学习 自动编码器
在线阅读 下载PDF
基于改进堆叠稀疏降噪自编码器的轴承故障诊断 被引量:9
4
作者 张智恒 周凤星 +1 位作者 严保康 喻尚 《轴承》 北大核心 2021年第2期35-41,共7页
为提高堆叠稀疏降噪自编码器的性能,解决其计算复杂度高、收敛速度慢等问题,提出了一种基于堆叠边缘化稀疏降噪自编码器的滚动轴承故障诊断方法。首先,对稀疏降噪自编码器的损失函数进行边缘化处理,并结合逐层贪婪训练策略构建出SMSDAE... 为提高堆叠稀疏降噪自编码器的性能,解决其计算复杂度高、收敛速度慢等问题,提出了一种基于堆叠边缘化稀疏降噪自编码器的滚动轴承故障诊断方法。首先,对稀疏降噪自编码器的损失函数进行边缘化处理,并结合逐层贪婪训练策略构建出SMSDAE网络;然后,将SMSDAE网络与Softmax分类器结合,得到SMSDAE-Softmax特征提取模型;最后,将提取到的特征输入到SVM多分类器中完成对滚动轴承的智能故障诊断。QPZZ-Ⅱ旋转机械故障模拟试验平台所得故障信号的处理结果表明,该方法的平均故障诊断率达到了99.9%,相对于其他方法具备更快的收敛速度,更好的诊断效果,以及更强的鲁棒性。另外,采用美国西储大学轴承数据中心10种轴承故障信号进行分析,结果证明了该方法在面对不同类型轴承以及多种故障信号时具备良好的诊断性能,有一定的普适性。 展开更多
关键词 滚动轴承 故障诊断 边缘化稀疏降噪自编码器 深度学习
在线阅读 下载PDF
基于堆叠自编码器神经网络的复合电磁检测铁磁性双层套管腐蚀缺陷分类识别方法 被引量:4
5
作者 张曦郁 李勇 +1 位作者 闫贝 敬好青 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2018年第1期72-78,共7页
铁磁性双层套管长期服役于恶劣的工作环境,极易出现腐蚀缺陷,定期为服役中的双层套管进行在线检测十分必要,而对管壁腐蚀缺陷位置的分类识别是管道定量检测与维修的前提和基础,实时准确的套管腐蚀缺陷分类识别能力是决定管道在线检测效... 铁磁性双层套管长期服役于恶劣的工作环境,极易出现腐蚀缺陷,定期为服役中的双层套管进行在线检测十分必要,而对管壁腐蚀缺陷位置的分类识别是管道定量检测与维修的前提和基础,实时准确的套管腐蚀缺陷分类识别能力是决定管道在线检测效率的重要因素。针对这一情况,将脉冲远场涡流和脉冲涡流技术相结合,提出了基于堆叠自编码器神经网络的分类方法。通过仿真和实验选取合适特征量作为输入层,实现了内管外壁腐蚀、外管内壁腐蚀和外管外壁腐蚀的分类,实验整体预判精度可达97.5%,结果表明该方法可对双层套管腐蚀缺陷缺陷实施高效、高精度分类识别。 展开更多
关键词 亚表面腐蚀缺陷 分类识别 铁磁性双层套管 脉冲远场涡流检测 脉冲涡流检测 自编码器神经网络
在线阅读 下载PDF
基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制 被引量:2
6
作者 王亚伦 周涛 +2 位作者 陈中 王毅 权浩 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第11期1477-1491,共15页
风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的... 风电调频的逐步惯性控制(SIC)策略在负荷波动后提供一个阶跃式功率增发,能够有效阻止系统频率下降,保障电网频率安全.但在其功率恢复阶段,容易出现二次频率跌落现象,需优化SIC以获得更好的调频效果.传统方法存在计算维度高和耗时较长的弊端,难以满足不同场景下快速提供最优控制效果的需求.为实现负荷扰动事件下风电调频的最优逐步惯性快速控制,引入深度学习算法,提出一种基于堆叠式降噪自动编码器(SDAE)和深度神经网络(DNN)的风电调频逐步惯性智能控制方法.首先,使用麻雀搜索算法获得最优参数,使用SDAE高效提取数据特征;随后,基于DNN对数据特征进行学习,并引入加速自适应矩估计优化网络参数,提升网络全局最优参数;最后,应用SDAE-DNN联合方法实现扰动事件后风电调频的逐步惯性在线控制.在IEEE 30节点测试系统中分别对单台风力机和风电场进行仿真分析,与传统方法、浅层反向传播神经网络及原始DNN所得结果对比发现,所提网络结构具有更优的预测精度和泛化能力,该方法能够实现良好的逐步惯性调频效果. 展开更多
关键词 逐步惯性控制 二次频率跌落 麻雀搜索算法 式降噪自动编码器 深度神经网络
在线阅读 下载PDF
基于堆叠稀疏自动编码器的SAR图像变化检测 被引量:2
7
作者 冯春凤 范洪冬 +1 位作者 温斌繁 马骕 《激光杂志》 北大核心 2018年第11期29-33,共5页
针对合成孔径雷达(SAR)图像存在较强相干斑的特性,该文基于深度学习理论,将堆叠稀疏自编码器(SSAE)运用到SAR图像的变化检测中,用以提取图像的深层特征。首先,用均值比法求取差异图像,然后将差异图像作为输入数据训练稀疏自动编码器... 针对合成孔径雷达(SAR)图像存在较强相干斑的特性,该文基于深度学习理论,将堆叠稀疏自编码器(SSAE)运用到SAR图像的变化检测中,用以提取图像的深层特征。首先,用均值比法求取差异图像,然后将差异图像作为输入数据训练稀疏自动编码器(SAE)并通过训练好的SAE提取图像特征,再将图像特征作为输入数据训练新的SAE同时通过训练好的SAE提取图像更深层次的特征,最后连接模糊C均值分类器对提取到的图像特征进行聚类得到变化检测图像。实验结果分析表明基于SSAE的分类模型,总体精度能达到98. 84%,优于实验中的其他方法,证明了深度学习方法在SAR图像的变化检测中具有良好的分类性能。 展开更多
关键词 SAR图像 稀疏自编码器 模糊C均值聚类 稀疏自编码器 变化检测
在线阅读 下载PDF
基于堆叠稀疏降噪自编码器的暂态稳定评估模型 被引量:5
8
作者 温涛 张敏 王怀远 《电力工程技术》 北大核心 2022年第1期207-212,共6页
深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样... 深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样本,然后对受损数据样本进行高阶特征提取,最后将提取的高阶特征重构成未受损的数据,这一训练过程大大提高了模型的抗噪能力。同时,在对输入特征进行重构的过程中,对隐藏层神经元权重和激活程度进行抑制,实现模型的稀疏化,以此提高模型的泛化能力。仿真结果表明,相对于其他机器学习算法,SSDAE模型具有良好的抗噪能力和泛化能力。 展开更多
关键词 深度学习 稀疏降噪自编码器(SSDAE) 暂态稳定 抗噪声能力 泛化能力 机器学习
在线阅读 下载PDF
融合稀疏因子的情感分析堆叠降噪自编码器模型 被引量:1
9
作者 蒋宗礼 王一大 《计算机科学》 CSCD 北大核心 2017年第12期227-231,共5页
基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含... 基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含噪声和稀疏性对特征抽取的影响。使用COAE评测数据集进行的情感分析实验表明所提模型分类的准确率和召回率都有所提高。 展开更多
关键词 深度学习 降噪自编码器 稀疏因子 情感分析
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
10
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
11
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于堆叠自动编码器的miRNA-疾病关联预测方法 被引量:2
12
作者 刘丹 赵森 +2 位作者 颜志良 赵静 王会青 《计算机科学》 CSCD 北大核心 2021年第10期114-120,共7页
作为一类小的非编码RNA,miRNA的异常调控与人类疾病的发生和发展密切相关,研究miRNA与疾病的关联对于了解人类疾病致病机制具有重要意义。机器学习方法被广泛应用于miRNA-疾病关联预测,然而现有方法仅仅考虑了miRNA与疾病相似性网络信息... 作为一类小的非编码RNA,miRNA的异常调控与人类疾病的发生和发展密切相关,研究miRNA与疾病的关联对于了解人类疾病致病机制具有重要意义。机器学习方法被广泛应用于miRNA-疾病关联预测,然而现有方法仅仅考虑了miRNA与疾病相似性网络信息,忽略了相似性网络的拓扑结构。因此,文中提出基于堆叠自动编码器的miRNA-疾病关联预测模型SAEMDA,该模型采用重启随机游走获取miRNA与疾病相似性网络的拓扑结构特征,用堆叠自动编码器提取miRNA与疾病的抽象低维特征,将得到的低维特征输入深度神经网络进行miRNA-疾病关联预测。SAEMDA模型在5折交叉验证中取得了较好的结果,并在结肠癌和肺癌两个案例中进行了验证。在结肠癌的案例中,此模型预测的前50个miRNA-疾病关联中的45个miRNA在数据库中得到了验证;在肺癌的案例中,排名前50的miRNA均在数据库中得到了验证。 展开更多
关键词 miRNA-疾病关联 相似性网络 拓扑结构 重启随机游走 自动编码器
在线阅读 下载PDF
堆叠自编码器在锚杆锚固缺陷类型识别中的应用 被引量:1
13
作者 王明明 王莎 +2 位作者 邢卉 孙晓云 路霖 《中国矿业》 北大核心 2020年第7期81-85,共5页
为了解决传统特征提取方法依赖人工经验,无法挖掘数据深层次的特征而降低锚杆锚固缺陷识别准确率的问题,本文提出一种基于自动选层堆叠自编码器特征提取的锚杆锚固缺陷识别算法。该算法首先利用Adam优化算法对重构误差进行优化,自动确... 为了解决传统特征提取方法依赖人工经验,无法挖掘数据深层次的特征而降低锚杆锚固缺陷识别准确率的问题,本文提出一种基于自动选层堆叠自编码器特征提取的锚杆锚固缺陷识别算法。该算法首先利用Adam优化算法对重构误差进行优化,自动确定堆叠编码器网络深度及参数,从而有效提高提取特征对缺陷的敏感度;然后利用Softmax多分类器对提取的特征信号进行锚杆锚固缺陷识别;最后通过数值模拟和物理模拟两种方法对所提算法进行了验证。结果表明:基于自动选层堆叠编码器的特征提取方法,能有效提取锚杆锚固缺陷特征,使得数值模拟和物理模拟缺陷平均识别率均达到97%以上。 展开更多
关键词 缺陷识别 自动选层网络 自编码器 特征提取 锚杆锚固
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
14
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
考虑惯量中心频率偏移的自编码器暂态稳定评估 被引量:15
15
作者 赵冬梅 王闯 +1 位作者 谢家康 马泰屹 《电网技术》 EI CSCD 北大核心 2022年第2期662-670,共9页
针对传统深度学习方法评估电力系统暂态稳定时没有考虑电力系统物理特性的问题,提出一种考虑系统惯量中心频率偏移量的电力系统暂态稳定评估方法。通过计算电力系统故障后的惯量中心频率偏移量,将样本进行分类,分别用堆叠稀疏自编码器... 针对传统深度学习方法评估电力系统暂态稳定时没有考虑电力系统物理特性的问题,提出一种考虑系统惯量中心频率偏移量的电力系统暂态稳定评估方法。通过计算电力系统故障后的惯量中心频率偏移量,将样本进行分类,分别用堆叠稀疏自编码器进行训练。当系统网架结构发生改变时,采用迁移成分分析法结合惯量中心频率偏移量对分类器进行更新。通过新英格兰10机39节点系统上的仿真结果表明所提方法比传统深度学习方法及迁移学习方法精度更高、泛化性能更强。当部分同步向量测量单元缺失以及数据中含有噪声时也能取得很好的效果。 展开更多
关键词 深度学习 电力系统 惯量中心频率 暂态稳定 稀疏自编码器
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
16
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于融合模型的网络安全态势感知方法 被引量:7
17
作者 郭尚伟 刘树峰 +3 位作者 李子铭 欧阳德强 王宁 向涛 《计算机工程》 CAS CSCD 北大核心 2024年第11期1-9,共9页
伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在... 伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在数据特征提取及较长时间序列数据处理能力不足的问题,提出一种融合堆栈稀疏自编码器(SSAE)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AM)的模型。通过SSAE和CNN提取数据特征,利用AM强化BiGRU对关键信息的关注度,实现对异常流量的攻击类别判定,并结合网络安全态势量化指标,对网络安全态势进行量化评分并划分等级。实验结果表明,融合模型在各项指标上均优于传统深度学习模型,能够准确感知网络态势。 展开更多
关键词 态势感知 威胁检测 稀疏自编码器 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于改进Transformer的持续血糖浓度预测模型
18
作者 徐鹤 杨丹丹 +1 位作者 刘思行 季一木 《数据采集与处理》 北大核心 2025年第4期1065-1081,共17页
糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型... 糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型,旨在提高模型对传感器提取数据的适应性。在该模型中,堆叠式降噪自编码器(Stacked denoising auto encoder,SDAE)被嵌入Transformer编码器的结构中,实现对输入数据的重构去噪和特征提取;然后,采用混合位置编码策略替代原来的单一绝对位置编码嵌入,同时将轻量级解码器引入Transformer模型中,替代原始结构复杂的解码器,聚合来自不同层次的特征信息,同时获取局部和全局特征;最后,通过搭建的SDAE-改进Transformer网络对CGM数据序列并行化训练,更全面地捕捉数据中的时序模式和复杂关联,提高预测性能。实验结果表明,该模型相较于传统方法在血糖预测任务中取得了显著的性能提升,证实了其在处理CGM数据时的有效性和鲁棒性。 展开更多
关键词 持续血糖监测 神经网络 降噪自编码器 TRANSFORMER 注意力机制
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法
19
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
一种基于深度神经网络的无线定位方法 被引量:17
20
作者 刘侃 张伟 +2 位作者 张伟东 张友梅 顾建军 《计算机工程》 CAS CSCD 北大核心 2016年第7期82-85,共4页
考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分... 考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分不同时段从现实场景中采集数据进行实验,结果表明,针对波动的无线信号,该方法能有效提高定位准确率。 展开更多
关键词 无线定位 深度神经网络 回归 深度学习 去噪自编码器
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部