期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于堆叠稀疏自编码的滚动轴承故障诊断 被引量:12
1
作者 侯荣涛 周子贤 +2 位作者 赵晓平 谢阳阳 王丽华 《轴承》 北大核心 2018年第3期49-54,60,共7页
针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最... 针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最终将特征输入softmax分类器实现滚动轴承健康状况精确诊断。在动力传动故障诊断试验台采集了5类轴承故障数据进行测试。试验结果表明:SSAE算法能够有效地提取故障特征,且故障诊断效果优于传统智能诊断方法。 展开更多
关键词 滚动轴承 深度学习 堆叠稀疏自编码算法 故障诊断
在线阅读 下载PDF
基于堆叠稀疏自编码的模糊C-均值聚类算法 被引量:9
2
作者 段宝彬 韩立新 谢进 《计算机工程与应用》 CSCD 北大核心 2015年第4期154-157,共4页
针对模糊C-均值聚类算法对孤立点、随机初始化的聚类中心比较敏感的问题,将堆叠稀疏自编码与传统模糊C-均值聚类算法相结合,对传统模糊C-均值聚类算法进行了改进。由于堆叠稀疏自编码可以提取原始数据集从低层到高层的特征,而高层的特... 针对模糊C-均值聚类算法对孤立点、随机初始化的聚类中心比较敏感的问题,将堆叠稀疏自编码与传统模糊C-均值聚类算法相结合,对传统模糊C-均值聚类算法进行了改进。由于堆叠稀疏自编码可以提取原始数据集从低层到高层的特征,而高层的特征通常比原始数据集更能反映待聚类样本的本质特征,用其代替原始数据集进行聚类,有助于提高聚类的效果。利用改进后的算法在UCI的几个标准数据集上进行实验,结果表明改进后的算法是有效可行的。 展开更多
关键词 堆叠稀疏自编码 模糊C-均值聚类 特征 深度学习
在线阅读 下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
3
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 堆叠稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
4
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
深度学习与多信号融合在铣刀磨损状态识别中的研究 被引量:5
5
作者 穆殿方 刘献礼 +4 位作者 岳彩旭 Steven Y.LIANG 陈志涛 李恒帅 徐梦迪 《机械科学与技术》 CSCD 北大核心 2021年第10期1581-1589,共9页
为精确地识别刀具磨损状态,提出了一种深度学习与多信号融合相结合的识别方法。以自编码网络为基础,构建了堆叠稀疏自编码网络。采集铣刀不同磨损状态下的力信号、振动信号及声发射信号,并对上述信号进行小波包分解以便获取能够表征铣... 为精确地识别刀具磨损状态,提出了一种深度学习与多信号融合相结合的识别方法。以自编码网络为基础,构建了堆叠稀疏自编码网络。采集铣刀不同磨损状态下的力信号、振动信号及声发射信号,并对上述信号进行小波包分解以便获取能够表征铣刀磨损的时频域特征。利用无监督学习和有监督学习对堆叠稀疏自编码网络进行训练,建立了深度学习的铣刀磨损状态识别模型。研究结果表明,多信号融合的深度学习模型对铣刀磨损状态识别准确率达到94.44%。 展开更多
关键词 刀具磨损 状态识别 深度学习 多信号融合 堆叠稀疏自编码网络
在线阅读 下载PDF
基于VMD-样本熵和SSAE的齿轮故障诊断 被引量:11
6
作者 徐飞 蒋占四 黄惠中 《组合机床与自动化加工技术》 北大核心 2020年第8期39-42,47,共5页
针对旋转机械中齿轮故障非线性、非平稳并伴有一定的噪声干扰的特点,文章提出一种基于变分模态分解(Variational mode decomposition,VMD)和堆叠稀疏自编码(Stack sparse auto encoder,SSAE)的齿轮故障诊断方法。将原始齿轮振动信号由... 针对旋转机械中齿轮故障非线性、非平稳并伴有一定的噪声干扰的特点,文章提出一种基于变分模态分解(Variational mode decomposition,VMD)和堆叠稀疏自编码(Stack sparse auto encoder,SSAE)的齿轮故障诊断方法。将原始齿轮振动信号由一维转化为二维信号,对二维信号每一行进行VMD分解得到若干有限带宽的内禀模态分量(Bandwidth limited intrinsic mode function,BLIMF),比较各模态分量的样本熵,选择样本熵最大的模态分量构成特征向量。将特征向量作为SSAE的输入进行模式识别,最终实现齿轮故障的分类。通过实例验证及对比实验,结果表明该方法具有较高的分类精度和诊断效率。 展开更多
关键词 变分模态分解 样本熵 堆叠稀疏自编码 齿轮故障
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部