期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于情感词典和堆叠残差的双向长短期记忆网络的情感分析 被引量:14
1
作者 罗浩然 杨青 《计算机应用》 CSCD 北大核心 2022年第4期1099-1107,共9页
情感分析作为自然语言处理(NLP)的细分研究方向经历了使用情感词典、机器学习和深度学习分析的发展过程。针对使用一般化的深度学习模型作为文本分类器对于特定领域的网络评论类型的文本的分析的精准度较低,训练时发生过拟合现象以及情... 情感分析作为自然语言处理(NLP)的细分研究方向经历了使用情感词典、机器学习和深度学习分析的发展过程。针对使用一般化的深度学习模型作为文本分类器对于特定领域的网络评论类型的文本的分析的精准度较低,训练时发生过拟合现象以及情感词典覆盖率低、编纂工作量大的问题,提出了基于情感词典和堆叠残差的双向长短期记忆(Bi-LSTM)网络的情感分析模型。首先,借助情感词典中情感词的设计覆盖“教育机器人”研究领域内的专业词汇,从而弥补Bi-LSTM模型在分析此类文本时精准度的不足;然后,使用Bi-LSTM和SnowNLP来降低情感词典的编纂体量。长短期记忆(LSTM)网络的“记忆门”“遗忘门”结构可以在保证充分考虑评论文本中的前后词语的关联性的同时,适时选择遗忘一些已分析词语,从而避免反向传播时的梯度爆炸问题。而在将堆叠残差的Bi-LSTM引入后,不仅使得模型的层数加深至8层,而且还使残差网络避免了叠加LSTM时会导致的“退化”问题;最后,通过适当设置和调整两部分的得分权重,并将总分使用Sigmoid激活函数标准化到[0,1]的区间上,按照[0,0.5],(0.5,1]的区间划分分别表示负面和正面情绪,完成情感分类。实验结果表明,在“教育机器人”评论数据集中,所提模型对于情感分类准确率相较于标准的LSTM模型提升了约4.5个百分点,相较于BERT提升了约2.0个百分点。综上,所提模型将基于情感词典和深度学习模型的情感分类方法一般化;而通过修改情感词典中的情感词汇并适当调整深度学习模型的结构和层数,所提模型可以应用于电子商务平台中各类商品的购物评价的精确情感分析,从而帮助企业洞悉消费者的购物心理和市场需求,同时也可以为消费者提供商品质量的一种参考标准。 展开更多
关键词 双向长短记忆网络 购物评论 情感分析 残差 情感词典
在线阅读 下载PDF
结合知识图谱与双向长短时记忆网络的小麦条锈病预测 被引量:30
2
作者 张善文 王振 王祖良 《农业工程学报》 EI CAS CSCD 北大核心 2020年第12期172-178,共7页
针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各... 针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。 展开更多
关键词 病害 预测 模型 小麦条锈病预测 知识图谱 长短记忆 双向长短记忆网络(Bi-LSTM)
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
3
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 方法 序列到序列 双向长短记忆网络 去噪自编码器
在线阅读 下载PDF
模型误差影响下基于CNN+BiLSTM神经网络的非圆信号目标直接跟踪算法 被引量:1
4
作者 尹洁昕 王鼎 +1 位作者 杨欣 杨宾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1315-1329,共15页
针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算... 针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算法首先利用多运动观测阵列信号各频带间的相关性与辐射源信号的非圆特性,建立模型误差影响下的扩展多站观测矢量;接着利用多个观测时隙内扩展多站观测矢量的信号子空间构造空时特征输入序列;然后设计基于CNN与BiLSTM混合神经网络的直接跟踪模型,通过训练实现对非圆目标的轨迹矢量直接估计.本文算法是从原始数据信号子空间中估计轨迹矢量的直接跟踪模式,相比传统“观测参数估计+滤波轨迹跟踪”的两步估计模式,具有更高的估计精度.由于本文算法在神经网络训练过程中学习到模型误差的信息,因此能够实现对多种误差的校正.仿真结果表明,本文算法较传统两步跟踪算法与现有直接跟踪算法均具有更高的轨迹估计精度,能够明显提升模型误差影响下多站协同跟踪的鲁棒性. 展开更多
关键词 直接跟踪 非圆信号 模型误差 卷积神经网络 双向长短记忆网络
在线阅读 下载PDF
基于改进LSTNet模型的地铁车站客运量预测算法研究
5
作者 许玲 管剑波 +1 位作者 许锡伟 班勇 《城市轨道交通研究》 北大核心 2025年第7期163-169,共7页
[目的]为了有效应对地铁线路高峰时段进出站客运量压力,需构建精准的客运量预测模型,以掌握地铁车站进出站量的时空分布规律,提升地铁线路运营调度决策的科学性。[方法]选取了杭州地铁的客流数据,介绍了数据的类型,以及数据预处理、数... [目的]为了有效应对地铁线路高峰时段进出站客运量压力,需构建精准的客运量预测模型,以掌握地铁车站进出站量的时空分布规律,提升地铁线路运营调度决策的科学性。[方法]选取了杭州地铁的客流数据,介绍了数据的类型,以及数据预处理、数据分析的要求。在LSTNet模型基础上引入了Bi-LSTM模型及注意力机制,建立了改进LSTNet预测模型,进而提出了一种融合多尺度时序特征的地铁客流预测方法。选取了杭州地铁6个车站的客流数据,分别采用LSTM模型、LSTNet模型、改进LSTNet模型进行预测。基于预测结果,对改进LSTNet模型的性能进行评估。[结果及结论]与采用LSTM模型、LSTNet模型相比,采用改进LSTNet模型后,地铁车站总客运量预测的平均绝对百分比误差分别降低了5.3%、2.4%。改进LSTNet模型可以显著提升地铁客流预测的精度与稳定性。 展开更多
关键词 地铁 车站 客运量预测 改进LSTNet模型 双向长短记忆神经网络 注意力机制
在线阅读 下载PDF
基于AR-CNN-BiLSTM组合模型的直升机尾减轴承剩余寿命预测
6
作者 林翔 毕果 +2 位作者 王振忠 刘国亮 刘芝福 《厦门大学学报(自然科学版)》 北大核心 2025年第4期653-659,共7页
[目的]对于直升机尾减速器轴承的在线剩余使用寿命(remaining useful life,RUL)预测算法,既要能够实现早期损伤的检测,又要满足算法的时效性要求.[方法]为了较好地反映轴承信号的退化趋势,对剩余使用寿命进行预测,本文选用双向长短时记... [目的]对于直升机尾减速器轴承的在线剩余使用寿命(remaining useful life,RUL)预测算法,既要能够实现早期损伤的检测,又要满足算法的时效性要求.[方法]为了较好地反映轴承信号的退化趋势,对剩余使用寿命进行预测,本文选用双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)进行时序特征提取.同时,为了弥补BiLSTM训练速度慢,对早期局部特征不敏感的问题,利用自回归模型(autoregressive model,AR)进行数据降维,利用卷积神经网络(convolutional neural network,CNN)提升局部特征的提取性能.[结果]在直升机尾减试验台数据集及西安交通大学轴承数据集上进行算法测试,相对于LSTM、BiLSTM、CNN-BiLSTM,AR-CNN-BiLSTM表现出更高的预测精度和更快的训练速度.[结论]AR-CNN-BiLSTM能满足尾减轴承在线剩余使用寿命预测对早期损伤识别及时效性的要求.引入BiLSTM由于能充分挖掘时序的前向和后向信息,能提高预测精度,但也导致训练时间的增加;CNN凭借其出色的特征提取能力,既能挖掘深度特征又能降低数据维度,可适当提升算法的预测精度和训练速度;AR将复杂的时序数据映射为自相关系数和残差组成的特征矩阵,能有效提升算法的预测精度和训练速度. 展开更多
关键词 直升机尾减速器 滚动轴承 自回归模型 双向长短记忆网络 剩余寿命预测
在线阅读 下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究 被引量:4
7
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短记忆网络 条件随机场
在线阅读 下载PDF
基于TPA‑MBLSTM模型的超短期风电功率预测 被引量:9
8
作者 蔡昌春 范靖浩 +1 位作者 李源佳 何瑶瑶 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第1期47-56,共10页
风速变化的间歇性和波动性给风功率的精准预测带来极大挑战,充分挖掘风电功率与风速等关键因素的内在规律是提高风电功率预测精度的有效途径。提出一种结合时间模式注意力(time pattern attention,TPA)机制的多层堆叠双向长短期记忆网... 风速变化的间歇性和波动性给风功率的精准预测带来极大挑战,充分挖掘风电功率与风速等关键因素的内在规律是提高风电功率预测精度的有效途径。提出一种结合时间模式注意力(time pattern attention,TPA)机制的多层堆叠双向长短期记忆网络的超短期风电功率预测方法。首先,利用基于密度的含噪声空间聚类方法(den⁃sity based spatial clustering with noise,DBSCAN)和线性回归算法进行风功率数据集的异常值检测,利用k最邻近(k⁃nearest neighbor,KNN)插值法重构异常点数据;其次,综合考虑风电功率与各气象特征的内在关联性,在MBLSTM网络中引入TPA机制合理分配时间步长权重,捕捉风电功率时间序列潜在逻辑规律;最后,利用实验仿真数据进行分析验证本文方法的有效性,该方法能够充分挖掘风功率与风速影响因素的关系,从而提高其预测精度。 展开更多
关键词 风电功率预测 间模式注意力机制 多层双向长短记忆网络 异常数据检测 基于密度的含噪声空间聚类方法 线性回归
在线阅读 下载PDF
基于混合双向LSTM的中间人攻击检测方法 被引量:4
9
作者 郭晓军 梁添鑫 +1 位作者 靳玮琨 孙雨生 《计算机工程与设计》 北大核心 2024年第12期3560-3567,共8页
针对局域网中基于ARP协议的中间人攻击检测准确率低、误报率高、泛化性差的问题,提出一种结合极端随机树分类器(ETC)和改进注意力机制(IAM)的双向长短时记忆网络(BiLSTM)的组合模型。利用ETC提取数据特征,通过改进的注意力机制模块处理... 针对局域网中基于ARP协议的中间人攻击检测准确率低、误报率高、泛化性差的问题,提出一种结合极端随机树分类器(ETC)和改进注意力机制(IAM)的双向长短时记忆网络(BiLSTM)的组合模型。利用ETC提取数据特征,通过改进的注意力机制模块处理中间人攻击流量时间序列信息,将组合特征输入BiLSTM实现对中间人攻击的检测。实验结果表明,在Kitsune数据集中,该模型的中间人攻击检测准确率达99.98%,在自建Ooter数据集中为99.94%。相较于主流的中间人攻击检测算法,该方法具有更高的准确率、更低的误报率及更好的泛化性。 展开更多
关键词 中间人攻击 地址解析协议 深度学习 双向长短记忆网络 注意力机制 极端随机树分类器 模型融合
在线阅读 下载PDF
ConvNeXt网络及Stacked BiLSTM-Self-Attention在轴承剩余寿命预测中的应用 被引量:1
10
作者 张印文 王琳霖 +1 位作者 薛文科 梁文婕 《机电工程》 CAS 北大核心 2024年第11期1977-1985,1994,共10页
在滚动轴承剩余使用寿命预测方面,采用传统方法时存在鲁棒性差、精度低等各种问题。近些年来深度学习的发展为解决这些问题提供了新的思路。为了进一步提高对轴承寿命的预测精度,提出了一种基于ConvNeXt网络、堆叠双向长短时记忆网络(SB... 在滚动轴承剩余使用寿命预测方面,采用传统方法时存在鲁棒性差、精度低等各种问题。近些年来深度学习的发展为解决这些问题提供了新的思路。为了进一步提高对轴承寿命的预测精度,提出了一种基于ConvNeXt网络、堆叠双向长短时记忆网络(SBiLSTM)和自注意力机制(Self-Attention)的滚动轴承寿命预测方法。首先,采用连续小波变换(CWT)构造了振动信号的时频图,以更好地捕捉信号的时域和频域特征;然后,将得到的时频图输入到构建的ConvNeXt网络中,通过卷积、池化和层归一化等操作,对时频图的关键特征进行了提取;最后,将提取后的特征输入到SBiLSTM-Self-Attention模块中,进一步提取了时序信息和特征权重分配数据,利用PHM2012挑战数据集进行了验证,通过实验分析了该方法的均方根误差(RMSE)和平均绝对误差(MAE)。研究结果表明:相较于现有技术方法,该方法的平均RMSE为0.031;与其他三种方法,即卷积神经网络(CNN)、深度残差双向门控循环单元(DRN-BiGRU)和深度卷积自注意力双向门控循环单元(DCNN-Self-Attention-BiGRU)相比,其平均RMSE值分别下降了79%、74%和55%,MAE值分别下降了78%、73%和53%,说明该方法在滚动轴承剩余寿命预测中有较好的性能。 展开更多
关键词 滚动轴承 剩余寿命预测 ConvNeXt网络 双向长短记忆网络 自注意力机制 深度学习 连续小波变换
在线阅读 下载PDF
基于BERT和标签混淆的文本分类模型 被引量:1
11
作者 韩博 成卫青 《南京邮电大学学报(自然科学版)》 北大核心 2024年第3期100-108,共9页
目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签... 目前,文本分类的研究主要集中在通过优化文本分类器来增强分类性能。然而,标签和文本之间的联系并没有得到很好的利用。尽管BERT对文本特征的处理表现出了非常好的效果,但对文本和标签的特征提取还有一定的提升空间。文中通过结合标签混淆模型(Label Confusion Model,LCM),提出一种基于BERT和LCM的文本分类模型(Model Based on BERT and Label Confusion,BLC),对文本和标签的特征进一步做了处理。充分利用BERT每一层的句向量和最后一层的词向量,结合双向长短时记忆网络(Bi-LSTM)得到文本表示,来替代BERT原始的文本特征表示。标签在进入LCM之前,使用自注意力网络和Bi-LSTM提高标签之间相互依赖关系,从而提高最终的分类性能。在4个文本分类基准数据集上的实验结果证明了所提模型的有效性。 展开更多
关键词 文本分类 BERT 标签混淆模型 双向长短记忆网络 自注意力网络
在线阅读 下载PDF
基于CNN_BiLSTM的矿井瓦斯涌出量预测模型 被引量:3
12
作者 解恒星 张雄 +4 位作者 董锦洋 刘晓东 姚小兵 毕振彪 李磊 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第11期53-59,共7页
为了实现对瓦斯涌出量准确预测,从而有效预防瓦斯灾害。提出1种结合卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)的瓦斯涌出量预测模型,采用CNN在时间序列上提... 为了实现对瓦斯涌出量准确预测,从而有效预防瓦斯灾害。提出1种结合卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)的瓦斯涌出量预测模型,采用CNN在时间序列上提取瓦斯涌出量及其影响因素的局部关键特征,有效捕捉数据的局部时序相关性;BiLSTM模型利用这些特征,通过其前向和后向处理能力,全面捕捉时间序列中长期依赖性和复杂模式。研究结果表明:该模型预测准确率达93.6%,均方误差显著低于CNN、BPNN、LSTM、BiLSTM、CNN_LSTM、CNN_BiLSTM 6个模型,决定系数接近1,表明其出色的预测能力和解释力。研究结果可有效预测瓦斯涌出量波动,有助于提高矿井瓦斯风险预警能力,提升矿井安全管理水平。 展开更多
关键词 瓦斯涌出量预测模型 卷积神经网络 双向长短记忆网络 反向神经网络 基线对比
在线阅读 下载PDF
基于BiLSTM及权重组合策略的膜污染预测
13
作者 陈坤杰 张士航 +3 位作者 劳裕婷 孙啸 贲宗友 柏钰 《农业机械学报》 北大核心 2025年第6期684-690,共7页
针对膜分离法回收谷朊粉加工废水中的蛋白质时极易出现的膜污染问题,提出了一种基于双向长短时记忆网络(Bi-directional long short-term memory,BiLSTM)的权重组合模型用于对膜污染状况的预测。以谷朊粉加工废水提取回收中试生产线采集... 针对膜分离法回收谷朊粉加工废水中的蛋白质时极易出现的膜污染问题,提出了一种基于双向长短时记忆网络(Bi-directional long short-term memory,BiLSTM)的权重组合模型用于对膜污染状况的预测。以谷朊粉加工废水提取回收中试生产线采集的14个相关变量作为输入,以膜通量变化量作为输出,建立支持向量机模型(Support vector machine,SVM)、反向传播神经网络模型(Back propagation,BP)、随机森林模型(Random forest,RF)、广义回归神经网络模型(Generalized regression neural network,GRNN)4种基准模型和BiLSTM模型1种给定模型,通过误差倒数法计算基准模型与给定模型的权重,构建权重组合预测模型;最后以决定系数R^(2)和均方误差(MSE)为评价指标,分析单项模型与权重组合模型的预测性能。结果表明,权重组合模型能够综合单项模型优点,在性能上显著优于单项模型;其中BP+BiLSTM+RF模型R^(2)高达0.9906,具有较高的拟合精度;MSE为1.004 L^(2)/(h^(2)·m^(4)),在所有模型中最低,相较BP、BiLSTM和RF单项模型,分别降低46.05%、67.24%、50.81%。所开发的权重组合模型可用于谷朊粉加工废水蛋白回收处理时膜污染程度精确预测。 展开更多
关键词 谷朊粉 膜污染预测模型 权重组合策略 双向长短记忆网络
在线阅读 下载PDF
儿童异常肺音识别的时序优化神经网络模型
14
作者 张龙基 魏云龙 +2 位作者 郑晓明 俞英健 熊丽君 《声学技术》 2025年第5期730-737,共8页
异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网... 异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网络(convolutional neural network,CNN)与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的混合模型,用于儿童异常肺音的分类方法。该方法通过CNN对MFCC特征进行空间特性提取,利用BiLSTM对MFCC音频特征进行时序特性提取,建立了BCNnet(BILSTM CNN network)模型。文章收集并建立了一个儿童肺音数据集,在该数据集上,所提方法平均准确率可达75.3%,与以声谱图为输入的CNN(并行池化)模型相比,准确率提高了3.7个百分点,且在模型大小和识别速度上均有改善。 展开更多
关键词 异常肺音 MFCC特征 卷积神经网络 双向长短记忆网络 BCNnet模型
在线阅读 下载PDF
基于MSLSTM-DA模型的水质自动监测异常数据报警 被引量:9
15
作者 嵇晓燕 姚志鹏 +3 位作者 杨凯 陈亚男 王正 安新国 《中国环境科学》 EI CAS CSCD 北大核心 2022年第4期1877-1883,共7页
提出一种基于多元堆叠长短时记忆网络-差值分析(MSLSTM-DA)模型对地表水质异常数据进行报警的方法.该方法首先建立MSLSTM模型对水质指标数据进行预测,再基于预测结果的残差分布建立DA模型,并确定各个指标的数据异常阈值,当实测数据与预... 提出一种基于多元堆叠长短时记忆网络-差值分析(MSLSTM-DA)模型对地表水质异常数据进行报警的方法.该方法首先建立MSLSTM模型对水质指标数据进行预测,再基于预测结果的残差分布建立DA模型,并确定各个指标的数据异常阈值,当实测数据与预测数据差值大于阈值时进行数据报警.以长江流域监测断面的水质数据进行了方法有效性验证.结果表明,构建的预测模型对5个指标的MAE、MAPE均值比BP神经网络预测模型降低21.0%,17.8%,比LSTM模型降低16.8%,17.9%.皮尔逊系数均值比BP神经网络、LSTM模型的分别高5.9%,4.4%.5个指标共检出水质异常数据37条,其中34条经人工判断确实存在有异常,报警准确率高达91.9%. 展开更多
关键词 长短记忆网络 差值分析 水质异常报警
在线阅读 下载PDF
基于MLP和注意力机制BiLSTM的水电机组劣化趋势预测
16
作者 何一纯 李超顺 杨云鹏 《水电能源科学》 北大核心 2025年第3期177-181,100,共6页
水电站因工作时间长、内部结构复杂及运行环境等因素导致水电机组部件逐步老化受损,使电站运行存在重大安全隐患。水电机组劣化趋势预测能反映机组的运行安全,为此提出一种基于多层感知机(MLP)和注意力机制的双向长短时记忆(Attention-B... 水电站因工作时间长、内部结构复杂及运行环境等因素导致水电机组部件逐步老化受损,使电站运行存在重大安全隐患。水电机组劣化趋势预测能反映机组的运行安全,为此提出一种基于多层感知机(MLP)和注意力机制的双向长短时记忆(Attention-BiLSTM)相结合的劣化趋势预测模型(MLP-BiLSTM-Attention),首先将机组各工况数据与各个振摆数据进行相关性分析,获取关键部分之间的高度相关性;然后提取较高相关度特征值并输入改进后的MLP模型构建健康模型,利用实际机组运行数据与健康模型数据构建机组劣化度,劣化度信息输入Attention-BiLSTM预测网络实现劣化度预测;最后通过多种模型对比验证了所提模型的可行性和有效性。 展开更多
关键词 水轮机组 劣化预测 健康模型 多层感知机 双向长短记忆网络
在线阅读 下载PDF
基于CNN-BLSTM的化妆品违法违规行为分类模型 被引量:1
17
作者 胡康 何思宇 +1 位作者 左敏 葛伟 《智能系统学报》 CSCD 北大核心 2021年第6期1151-1157,共7页
针对化妆品安全监管部门抽样检测所含违法违规行为自动识别且分类困难的问题,建立语义分类自动识别模型,辅助有关部门构建智能化管理体系,依靠数据实现科学决策及有效监管。本文分别使用中文词向量及字向量作为双路模型输入,采用CNN(con... 针对化妆品安全监管部门抽样检测所含违法违规行为自动识别且分类困难的问题,建立语义分类自动识别模型,辅助有关部门构建智能化管理体系,依靠数据实现科学决策及有效监管。本文分别使用中文词向量及字向量作为双路模型输入,采用CNN(convolutional neural network)网络模型训练字向量,BLSTM(bidirectional long short-term memory)网络模型训练词向量,并在BLSTM中引入位置注意力机制,构建基于CNNBLSTM的字词双维度化妆品违法违规行为分类模型。在染发类化妆品抽样检测数据集上进行的对比实验结果表明,CNN-BLSTM模型准确率比常用的几种深度神经网络模型均有明显提高,验证了其合理性和有效性。 展开更多
关键词 化妆品 双维度模型 自然语言处理 位置感知 注意力机制 卷积神经网络 双向长短记忆网络
在线阅读 下载PDF
基于组合注意力模型EAAT的云KPI数据预测方法 被引量:1
18
作者 丁建立 龚子恒 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第6期652-661,共10页
为了准确分析云计算集群日常监控中KPI(Key Performance Indicator)数据的动态和变化趋势,并预测后续发展,达到提高云计算集群高可用性的目标,本文提出三分频的基于组合注意力模型的EWT-ARIMA-Auto-TPA (EAAT)云KPI数据预测方法.首先基... 为了准确分析云计算集群日常监控中KPI(Key Performance Indicator)数据的动态和变化趋势,并预测后续发展,达到提高云计算集群高可用性的目标,本文提出三分频的基于组合注意力模型的EWT-ARIMA-Auto-TPA (EAAT)云KPI数据预测方法.首先基于经验小波变换(Empirical Wavelet Transform, EWT)得到云KPI数据低中高频的内在模态变量(Intrinsic Mode Functions, IMFs)降低数据预测的复杂程度.其次,根据分解得到的低中高频IMFs信息特征,分别运用ARIMA、Autoformer、TPA-BiLSTM模型对每类IMFs进行预测.最后,将分类预测后结果经过逆变换IEWT加以合并得出预测结果.本文预测方法在谷歌和亚马逊的4个数据集上得到了验证,无论数据是否具有周期性或者稳定性,本文预测方法都有较好的结果,综合效果比对比模型有较大提升. 展开更多
关键词 云KPI数据 序预测方法 经验小波变换 组合注意力模型 双向长短记忆网络
在线阅读 下载PDF
基于迁移学习和Bi-LSTM神经网络的桥梁温度-应变映射建模方法 被引量:8
19
作者 方佳畅 黄天立 +1 位作者 李苗 王亚飞 《振动与冲击》 EI CSCD 北大核心 2023年第12期126-134,186,共10页
为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥... 为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥温度-应变映射模型建立方法。首先,利用解析模态分解(analytical mode decomposition,AMD)去噪应变数据,得到仅由温度引起的应变响应;其次,选择温度和某一测点应变数据构成数据集,采用Bi-LSTM神经网络训练该数据集,并通过网络结构和超参数优化建立温度-应变Bi-LSTM基准模型;最后,利用迁移学习方法,将已训练好的基准模型中部分参数迁移到其他温度-应变数据集,建立相应的温度-应变映射被迁移模型,并与未采用迁移学习的神经网络训练方法进行对比。研究结果表明,相比直接建立的温度-应变Bi-LSTM神经网络映射模型,采用迁移学习方法建立的被迁移模型,其拟合精度均高于所用的基准模型,且训练时间短,预测误差小。 展开更多
关键词 结构健康监测 大跨度斜拉桥 温度-应变映射模型 迁移学习 双向长短记忆(Bi-LSTM)神经网络
在线阅读 下载PDF
基于领域BERT模型的服务文本分类方法 被引量:5
20
作者 闫云飞 孙鹏 +2 位作者 张杰勇 马钰棠 赵亮 《空军工程大学学报》 CSCD 北大核心 2023年第1期103-111,共9页
针对BERT模型领域适应能力较差,无法解决训练数据类别数量不均衡和分类难易不均衡等问题,提出一种基于WBBI模型的服务文本分类方法。首先通过TF-IDF算法提取领域语料中的词汇扩展BERT词表,提升了BERT模型的领域适应性;其次,通过建立的BE... 针对BERT模型领域适应能力较差,无法解决训练数据类别数量不均衡和分类难易不均衡等问题,提出一种基于WBBI模型的服务文本分类方法。首先通过TF-IDF算法提取领域语料中的词汇扩展BERT词表,提升了BERT模型的领域适应性;其次,通过建立的BERT-BiLSTM模型实现服务文本分类;最后,针对数据集的类别数量不均衡和分类难易不均衡问题,在传统焦点损失函数的基础上提出了一种可以根据样本不均衡性特点动态调整的变焦损失函数。为了验证WBBI模型的性能,在互联网获取的真实数据集上进行了大量对比试验,实验结果表明:WBBI模型与通用文本分类模型TextCNN、BiLSTM-attention、RCNN、Transformer相比Macro-F1值分别提高了4.29%、6.59%、5.3%和43%;与基于BERT的文本分类模型BERT-CNN、BERT-DPCNN相比,WBBI模型具有更快的收敛速度和更好的分类效果。 展开更多
关键词 服务分类 文本分类 BERT模型 双向长短记忆网络(BiLSTM) 焦点损失函数
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部