期刊文献+
共找到315篇文章
< 1 2 16 >
每页显示 20 50 100
基于双向长短时记忆网络和自注意力机制的心音分类
1
作者 卢官明 李齐健 +4 位作者 卢峻禾 戚继荣 赵宇航 王洋 魏金生 《数据采集与处理》 北大核心 2025年第2期456-468,共13页
心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进... 心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进行分帧处理,提取每帧心音信号的梅尔频率倒谱系数(Mel⁃frequency cepstral coefficients,MFCC)特征;将MFCC特征序列输入Bi⁃LSTM网络,利用Bi⁃LSTM网络提取心音信号的时域上下文特征;通过自注意力机制动态调整Bi⁃LSTM网络各时间步输出特征的权重,得到有利于分类的更具鉴别性的心音特征;通过Softmax分类器实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016心音数据集上对所提出的算法使用10折交叉验证法进行了评估,得到0.9425的灵敏度、0.9437的特异度、0.8367的精度、0.8865的F1得分和0.9434的准确率,优于对比的典型算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,具有潜在的临床应用前景。 展开更多
关键词 心音分类 梅尔频率倒谱系数 双向长短记忆网络 自注意力机制
在线阅读 下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型 被引量:11
2
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短记忆网络 长序列处理
在线阅读 下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究
3
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 BERT 特征提取 双向长短记忆网络(BiLSTM)
在线阅读 下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测 被引量:1
4
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短记忆神经网络 改进灰狼算法 自适应位置更新
在线阅读 下载PDF
基于情感词典和堆叠残差的双向长短期记忆网络的情感分析 被引量:14
5
作者 罗浩然 杨青 《计算机应用》 CSCD 北大核心 2022年第4期1099-1107,共9页
情感分析作为自然语言处理(NLP)的细分研究方向经历了使用情感词典、机器学习和深度学习分析的发展过程。针对使用一般化的深度学习模型作为文本分类器对于特定领域的网络评论类型的文本的分析的精准度较低,训练时发生过拟合现象以及情... 情感分析作为自然语言处理(NLP)的细分研究方向经历了使用情感词典、机器学习和深度学习分析的发展过程。针对使用一般化的深度学习模型作为文本分类器对于特定领域的网络评论类型的文本的分析的精准度较低,训练时发生过拟合现象以及情感词典覆盖率低、编纂工作量大的问题,提出了基于情感词典和堆叠残差的双向长短期记忆(Bi-LSTM)网络的情感分析模型。首先,借助情感词典中情感词的设计覆盖“教育机器人”研究领域内的专业词汇,从而弥补Bi-LSTM模型在分析此类文本时精准度的不足;然后,使用Bi-LSTM和SnowNLP来降低情感词典的编纂体量。长短期记忆(LSTM)网络的“记忆门”“遗忘门”结构可以在保证充分考虑评论文本中的前后词语的关联性的同时,适时选择遗忘一些已分析词语,从而避免反向传播时的梯度爆炸问题。而在将堆叠残差的Bi-LSTM引入后,不仅使得模型的层数加深至8层,而且还使残差网络避免了叠加LSTM时会导致的“退化”问题;最后,通过适当设置和调整两部分的得分权重,并将总分使用Sigmoid激活函数标准化到[0,1]的区间上,按照[0,0.5],(0.5,1]的区间划分分别表示负面和正面情绪,完成情感分类。实验结果表明,在“教育机器人”评论数据集中,所提模型对于情感分类准确率相较于标准的LSTM模型提升了约4.5个百分点,相较于BERT提升了约2.0个百分点。综上,所提模型将基于情感词典和深度学习模型的情感分类方法一般化;而通过修改情感词典中的情感词汇并适当调整深度学习模型的结构和层数,所提模型可以应用于电子商务平台中各类商品的购物评价的精确情感分析,从而帮助企业洞悉消费者的购物心理和市场需求,同时也可以为消费者提供商品质量的一种参考标准。 展开更多
关键词 双向长短记忆网络 购物评论 情感分析 残差 情感词典
在线阅读 下载PDF
结合知识图谱与双向长短时记忆网络的小麦条锈病预测 被引量:30
6
作者 张善文 王振 王祖良 《农业工程学报》 EI CAS CSCD 北大核心 2020年第12期172-178,共7页
针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各... 针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。 展开更多
关键词 病害 预测 模型 小麦条锈病预测 知识图谱 长短记忆 双向长短记忆网络(Bi-LSTM)
在线阅读 下载PDF
基于多任务双向长短时记忆网络的隐式句间关系分析 被引量:7
7
作者 田文洪 高印权 +2 位作者 黄厚文 黎在万 张朝阳 《中文信息学报》 CSCD 北大核心 2019年第5期47-53,共7页
隐式句间关系识别是篇章句间关系识别任务中一个重要的问题。由于隐式句间关系的语料没有较好的特征,目前该任务的识别仍不能达到很好的效果。隐式句间关系的语句和显式句间关系的语句在语义等方面有着一定的联系,为了充分利用这两个任... 隐式句间关系识别是篇章句间关系识别任务中一个重要的问题。由于隐式句间关系的语料没有较好的特征,目前该任务的识别仍不能达到很好的效果。隐式句间关系的语句和显式句间关系的语句在语义等方面有着一定的联系,为了充分利用这两个任务之间的联系,该论文使用多任务学习的方法,并使用双向长短时记忆(BiLSTM)网络学习语句的相关特征;同时,为充分利用文本的特征,采用融合词嵌入的方法并引入先验知识。与其他基于哈工大的中文篇章级语义关系语料库的实验结果表明,该文方法的平均F1值为53%,提升约13%;平均召回率(Recall)为51%,提升约9%。 展开更多
关键词 篇章句间关系识别 隐式句间关系 多任务学习 双向长短记忆网络 融合词嵌入
在线阅读 下载PDF
基于注意力机制的双向长短时记忆网络模型突发事件演化关系抽取 被引量:14
8
作者 闻畅 刘宇 顾进广 《计算机应用》 CSCD 北大核心 2019年第6期1646-1651,共6页
针对现有突发事件关系抽取研究多集中于因果关系抽取而忽略了其他演化关系的问题,为了提高应急决策中信息抽取的完备性,应用一种基于注意力机制的双向长短时记忆(LSTM)网络模型进行突发事件演化关系抽取。首先,结合突发事件演化关系的概... 针对现有突发事件关系抽取研究多集中于因果关系抽取而忽略了其他演化关系的问题,为了提高应急决策中信息抽取的完备性,应用一种基于注意力机制的双向长短时记忆(LSTM)网络模型进行突发事件演化关系抽取。首先,结合突发事件演化关系的概念,构建演化关系模型并进行形式化定义,依据模型对突发事件语料进行标注;其次,搭建双向LSTM网络结构,并引入注意力机制计算注意力概率以突出关键词汇在文本中的重要程度;最终,使用搭建的网络模型进行演化关系抽取得到结果。在演化关系抽取实验中,相对于现有因果关系抽取方法,所提方法不仅抽取出更加充分的演化关系,为突发事件应急决策提供了更完善的信息;同时,在正确率、召回率和F1分数上分别平均提升了7.3%、6.7%和7.0%,有效提高了突发事件演化关系抽取的准确性。 展开更多
关键词 关系抽取 突发事件 演化关系 注意力机制 双向长短记忆网络
在线阅读 下载PDF
基于双向长短时记忆网络的系统异常检测方法 被引量:8
9
作者 张林栋 鲁燃 刘培玉 《计算机应用与软件》 北大核心 2020年第12期297-303,333,共8页
在系统日志异常检测中,日志结构不统一且新执行的日志路径检测依然不够准确。针对这些问题,提出一种基于双向长短时记忆网络的日志路径异常检测模型。通过日志解析器构造日志键使得日志结构统一化,同时将日志键转化为时序序列构建时序... 在系统日志异常检测中,日志结构不统一且新执行的日志路径检测依然不够准确。针对这些问题,提出一种基于双向长短时记忆网络的日志路径异常检测模型。通过日志解析器构造日志键使得日志结构统一化,同时将日志键转化为时序序列构建时序化的日志结构;采用双向长短时记忆网络对时序化的日志序列进行建模和预测,根据是否发生误判来优化模型参数,提升新执行的日志路径检测效率。实验结果表明,与传统的基于机器学习的日志路径异常检测模型相比,该模型在HDFS和OpenStack数据集上准确率分别提升11%和20%,验证了该模型的有效性。 展开更多
关键词 异常检测 日志路径 双向长短记忆网络 日志解析器 日志键 序序列号
在线阅读 下载PDF
基于双向长短时记忆神经网络的步态时空参数脑肌电解码方法 被引量:3
10
作者 魏鹏娜 马鹏程 +1 位作者 张进华 洪军 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期142-150,共9页
针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的... 针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的超参数;其次,同步采集脑电、下肢运动相关肌肉的表面肌电信号(sEMG)和下肢关节运动信号,并对脑电和表面肌电信号的步态相关特征进行分析;然后,以多通道脑电和下肢运动相关表面肌电信号作为解码模型的输入,自动提取脑肌电融合信号中步态相关特征并构建膝踝关节运动轨迹与特征之间的非线性回归模型;最后,以多通道脑电作为解码模型的输入,构建步态相关脑电信号和表面肌电信号之间的非线性回归模型。实验结果表明:所提方法与传统支持向量机方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数提高了0.12;与单独采用脑电、表面肌电信号和脑肌电信号平均绝对值特征融合信号进行解码方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数分别提高了0.81、0.19和0.63。该方法可实现从脑电信号中对部分表面肌电信号波形的解码,解码波形和实测波形的平均Pearson相关系数值接近0.5,证明从脑电信号中可解码出肌肉通道的表面肌电信号波形,为下肢外骨骼主动连续控制的应用提供了新思路。 展开更多
关键词 脑电 表面肌电 双向长短记忆神经网络 步态空参数解码 Pearson相关
在线阅读 下载PDF
基于多通道卷积双向长短时记忆网络的输电线故障分类 被引量:7
11
作者 沈银 席燕辉 陈子璇 《电力系统保护与控制》 CSCD 北大核心 2022年第3期114-120,共7页
针对单通道故障分类器不能全面表达三相故障特征信息引起分类精度不高的问题,提出了一种基于多通道卷积双向长短时记忆神经网络(MCCNN-BiLSTM)的输电线故障分类方法。该方法可同时输入故障三相信号,并能有效提取故障信号的空间和时间特... 针对单通道故障分类器不能全面表达三相故障特征信息引起分类精度不高的问题,提出了一种基于多通道卷积双向长短时记忆神经网络(MCCNN-BiLSTM)的输电线故障分类方法。该方法可同时输入故障三相信号,并能有效提取故障信号的空间和时间特征,实现了三相故障信号特征的全面提取,有效地提高了神经网络的分类的精度。基于735 kV三相串联补偿输电线模型大量故障数据分析,对三相故障电压信号不采用任何特征提取算法,仅截取故障周期的三相电压幅值数据作为基本故障特征信号输入。仿真实验结果表明:该网络能快速准确地分类识别11种故障,并且不易受故障时刻、过度电阻等因素的影响,具有良好的鲁棒性和适应性。 展开更多
关键词 输电线 多通道卷积神经网络 双向长短记忆神经网络 故障分类
在线阅读 下载PDF
基于注意力机制和双向长短时记忆网络的横波速度预测方法及应用 被引量:5
12
作者 何运康 李庆春 刘兴业 《石油物探》 CSCD 北大核心 2023年第2期225-235,共11页
横波速度信息对油气勘探而言至关重要,但实际测井资料中常常缺失横波速度资料。横波速度与测井参数之间存在非线性相关性,二者关系复杂难以用解析解表征。为此,提出了一种基于注意力机制和双向长短时记忆网络的横波速度预测方法(AT-BLS... 横波速度信息对油气勘探而言至关重要,但实际测井资料中常常缺失横波速度资料。横波速度与测井参数之间存在非线性相关性,二者关系复杂难以用解析解表征。为此,提出了一种基于注意力机制和双向长短时记忆网络的横波速度预测方法(AT-BLSTM)。该方法首先利用注意力机制为测井参数分配权重,自动聚焦对横波速度预测贡献大的测井参数,然后利用双向长短时记忆网络以及横波速度曲线纵向上的时序特征,挖掘各种测井参数与横波速度之间的相关关系,获得各种测井参数与横波速度之间的学习模型,再输入优选测井参数,最终可直接获得横波速度的预测结果。将上述方法应用于挪威北海Volve油田和我国西南某工区的实际测井资料进行横波速度预测,并将预测结果与常规双向长短时记忆网络、门控循环神经网络以及基于经验公式的传统方法的预测结果进行对比。结果表明,利用基于注意力机制和双向长短时记忆网络的横波速度预测方法得到的测井参数权重分配合理,横波速度预测结果与实测横波速度误差较小、相关系数较高,有效提高了横波速度预测精度,预测结果具有良好的稳定性。 展开更多
关键词 测井参数 横波速度预测 深度学习 注意力机制 双向长短记忆网络
在线阅读 下载PDF
基于双向长短时记忆网络和注意力机制的RNA m5C甲基化位点预测 被引量:1
13
作者 胡梦 李慧敏 +2 位作者 唐轶 王煜 陈鹏辉 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2023年第2期303-310,共8页
RNA 5-甲基胞嘧啶(m5C)修饰在许多生物过程中发挥重要的作用,对m5C位点的准确识别有助于更好地理解其生物学功能,所以识别m5C甲基化位点十分必要。尽管已发展了多种识别m5C甲基化位点的机器学习方法,但预测能力仍有待提高。本文基于双... RNA 5-甲基胞嘧啶(m5C)修饰在许多生物过程中发挥重要的作用,对m5C位点的准确识别有助于更好地理解其生物学功能,所以识别m5C甲基化位点十分必要。尽管已发展了多种识别m5C甲基化位点的机器学习方法,但预测能力仍有待提高。本文基于双向长短时记忆网络和注意力机制,提出了一种预测RNA m5C甲基化位点的深度学习算法。用该方法在人、小鼠、酿酒酵母和拟南芥共4种生物的RNA m5C数据集上进行实验,m5C位点预测AUC值分别达到92.5%、99.7%、93.6%和86.5%。与现有预测方法相比,该方法具有较好的预测性能,并且具有更优的泛化能力,为RNA m5C甲基化位点预测提供了一种新方法。 展开更多
关键词 双向长短记忆网络 注意力机制 m5C甲基化位点 深度学习
在线阅读 下载PDF
基于双向长短时记忆网络的企业弹性能力预测模型 被引量:2
14
作者 宋美琦 傅湘玲 +2 位作者 闫晨巍 仵伟强 任芸 《计算机科学》 CSCD 北大核心 2022年第11期197-205,共9页
传统的风险管理方法专注于识别、预测和评估可能发生的潜在风险,但当企业面临突发的、不可预期的风险时,往往束手无策。因此,学术界逐渐将风险管理的视角由预测并规避风险转变为提升企业自身对风险的承受能力和从风险中恢复的能力,也就... 传统的风险管理方法专注于识别、预测和评估可能发生的潜在风险,但当企业面临突发的、不可预期的风险时,往往束手无策。因此,学术界逐渐将风险管理的视角由预测并规避风险转变为提升企业自身对风险的承受能力和从风险中恢复的能力,也就是企业的弹性能力。文中提出了基于时序特征数据的企业弹性能力预测方法,使用Bi-LSTM对时序特征数据进行双向编码,获得企业的特征表示,并通过softmax分类器得到弹性能力分类结果。模型在中国上市公司的真实数据集中进行实验,macro-F1值达到89.0%,与RF,XGBoost和LightGBM等未使用时序特征数据的模型相比有一定提升。此外,进一步探讨了企业弹性能力的多种影响因素及其重要程度,并首次将机器学习方法应用到企业弹性能力的评估预测中,为企业应对突发风险提供了理论方法指导。 展开更多
关键词 企业弹性能力 序特征 风险管理 双向长短记忆网络
在线阅读 下载PDF
基于串级双向长短时记忆神经网络的测井数据重构 被引量:6
15
作者 周伟 赵海航 +2 位作者 蒋云凤 易军 赖富强 《石油地球物理勘探》 EI CSCD 北大核心 2022年第6期1473-1480,I0009,共9页
测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提... 测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提出一种基于串级双向长短时记忆神经网络(CBi-LSTM)的测井数据重构方法,在不增加额外测量成本的情况下,充分考虑缺失数据点的前趋与后继之间的双向关联性及测井曲线之间的相关性,利用串级系统将所获估计值与已知测井曲线合并为新的输入,采用迭代更新策略完成对缺失数据块的重构。对苏里格气田4口井的测井数据进行补全重构实验,所得结果表明:文中测井数据重构方法具有较高精度,同时所用模型具有更强的鲁棒性和泛化能力。 展开更多
关键词 测井曲线 重构 长短记忆神经网络 串级双向长短记忆神经网络
在线阅读 下载PDF
基于双向长短时记忆网络和卷积神经网络的电力系统暂态稳定评估 被引量:17
16
作者 李向伟 刘思言 高昆仑 《科学技术与工程》 北大核心 2020年第7期2733-2739,共7页
基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优... 基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(improved convolutional neural network,ICNN)与双向长短时记忆网络(bidirectional long short term memory network,BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。 展开更多
关键词 暂态稳定评估 双向长短记忆网络 改进卷积神经网络 PMU数据采集
在线阅读 下载PDF
基于双向长短时记忆网络的母线负荷分解方法 被引量:8
17
作者 钱甜甜 王珂 +1 位作者 徐立中 石飞 《电力工程技术》 2020年第6期104-109,共6页
目前在负荷分解领域的研究多以家庭住宅的总负荷分解为电器级别的负荷为主,对于中高电压等级的母线负荷分解研究较少,为解决这一问题,提出基于双向长短时记忆网络(Bi-LSTM)的中高电压等级母线负荷分解算法。首先在长短时记忆(LSTM)的基... 目前在负荷分解领域的研究多以家庭住宅的总负荷分解为电器级别的负荷为主,对于中高电压等级的母线负荷分解研究较少,为解决这一问题,提出基于双向长短时记忆网络(Bi-LSTM)的中高电压等级母线负荷分解算法。首先在长短时记忆(LSTM)的基础上构建了Bi-LSTM;其次以母线负荷和其对应的外部信息源(如日期类型、天气等)作为Bi-LSTM的输入量,母线负荷的各下属建筑负荷作为输出量,对Bi-LSTM进行训练;最后以网络分解的母线负荷构成值与实际值间的平均相对误差作为评价指标。实验结果表明该方法可有效对构成成分未知的母线负荷进行分解。 展开更多
关键词 母线负荷 负荷分解 人工智能 深度学习 双向长短记忆网络
在线阅读 下载PDF
基于双通道时空融合注意力网络的多特征语音情绪识别模型
18
作者 周启航 丁飞 +2 位作者 李蓉 王秉坤 张学军 《中国测试》 北大核心 2025年第7期1-8,37,共9页
针对Transformer在语音情绪识别中对时序特征和局部信息的提取能力存在不足的问题,文章提出双通道时空融合注意力网络的多特征语音情绪识别模型。该模型通过两个独立的通道分别处理不同类型的声学特征:BiLSTM-Transformer通道主要用于... 针对Transformer在语音情绪识别中对时序特征和局部信息的提取能力存在不足的问题,文章提出双通道时空融合注意力网络的多特征语音情绪识别模型。该模型通过两个独立的通道分别处理不同类型的声学特征:BiLSTM-Transformer通道主要用于捕捉时序依赖性和全局上下文信息,而2D-CNN通道则专注于提取频谱图和梅尔谱图中的空间特征。同时,文章设计一种多特征融合策略,将频谱图、梅尔谱图与eGeMAPS特征集有效融合,从而提升模型的情感识别能力。在CASIA和EMO-DB两个数据集上开展实验,分别达到93.41%和92.46%的准确率,结果优于现有的基于单一声学特征的方法,表明所提的多特征融合策略能够有效提升模型的情感识别性能。 展开更多
关键词 语音情绪识别 双向长短记忆网络 多特征融合 TRANSFORMER
在线阅读 下载PDF
基于双向长短时记忆模型的中文分词方法 被引量:12
19
作者 张洪刚 李焕 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期61-67,共7页
中文分词是中文自然语言处理中的关键基础技术之一.目前,传统分词算法依赖于特征工程,而验证特征的有效性需要大量的工作.基于神经网络的深度学习算法的兴起使得模型自动学习特征成为可能.文中基于深度学习中的双向长短时记忆(BLSTM)神... 中文分词是中文自然语言处理中的关键基础技术之一.目前,传统分词算法依赖于特征工程,而验证特征的有效性需要大量的工作.基于神经网络的深度学习算法的兴起使得模型自动学习特征成为可能.文中基于深度学习中的双向长短时记忆(BLSTM)神经网络模型对中文分词进行了研究.首先从大规模语料中学习中文字的语义向量,再将字向量应用于BLSTM模型实现分词,并在简体中文数据集(PKU、MSRA、CTB)和繁体中文数据集(HKCity U)等数据集上进行了实验.实验表明,在不依赖特征工程的情况下,基于BLSTM的中文分词方法仍可取得很好的效果. 展开更多
关键词 深度学习 神经网络 双向长短记忆 中文分词
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
20
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 方法 序列到序列 双向长短记忆网络 去噪自编码器
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部