The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key managemen...The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.展开更多
基金Project(61100201) supported by National Natural Science Foundation of ChinaProject(12ZZ019) supported by Technology Innovation Research Program,Shang Municipal Education Commission,China+1 种基金Project(LYM11053) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province,ChinaProject(NCET-12-0358) supported by New Century Excellent Talentsin University,Ministry of Education,China
文摘The key exposure problem is a practical threat for many security applications. In wireless sensor networks (WSNs), keys could be compromised easily due to its limited hardware protections. A secure group key management scheme is responsible for secure distributing group keys among valid nodes of the group. Based on the key-insulated encryption (KIE), we propose a group key management scheme (KIE-GKMS), which integrates the pair-wise key pre-distribution for WSN. The KIE-GKMS scheme updates group keys dynamically when adding or removing nodes. Moreover, the security analysis proves that the KIE-GKMS scheme not only obtains the semantic security, but also provides the forward and backward security. Finally, the theoretical analysis shows that the KIE-GKMS scheme has constant performance on both communication and storage costs in sensor nodes.