A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the...A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.展开更多
In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in convent...In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in conventional repetition-coded scheme,two different symbols were transmitted separately in two successive timeslots in the proposed rotation-coded cooperative diversity.In this way,constellation spread in the available two-dimensional signal space rather than on a single-dimensional line in repetition-coded scheme,which was supposed to be responsible for the additional coding gain.Under the proposed cooperative transmission model,upper bounds for the symbol-error-rate(SER)of cooperative diversity based on repetition code and rotation code were derived respectively.Both analytical and simulated results show that cooperative diversity based on rotation code can obtain an improved coding gain(by about 2 dB)than repetition-coded scheme without the expense of power or bandwidth.展开更多
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation, ChinaProject(NCET-06-0686) supported by Program for New Century Excellent Talents in UniversityProject(IRT0661) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.
基金Project(2006AA01Z270)supported by the National High Technology Research and Development Program of ChinaProject(U0635003)supported by the National Natural Science Foundation of Guangdong Province,ChinaProject(2007F07)supported by the National Science Foundation of Shaanxi Province,China
文摘In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in conventional repetition-coded scheme,two different symbols were transmitted separately in two successive timeslots in the proposed rotation-coded cooperative diversity.In this way,constellation spread in the available two-dimensional signal space rather than on a single-dimensional line in repetition-coded scheme,which was supposed to be responsible for the additional coding gain.Under the proposed cooperative transmission model,upper bounds for the symbol-error-rate(SER)of cooperative diversity based on repetition code and rotation code were derived respectively.Both analytical and simulated results show that cooperative diversity based on rotation code can obtain an improved coding gain(by about 2 dB)than repetition-coded scheme without the expense of power or bandwidth.