基于模型诊断(MBD)方法在不同的环境中有越来越多的用途,包括软件故障定位、电子表格的调试、Web服务和硬件设计,以及生物系统的分析等.受这些不同用途的启发,近年来MBD算法改进成效显著.然而,对体系庞大、结构复杂的系统,需要对现有方...基于模型诊断(MBD)方法在不同的环境中有越来越多的用途,包括软件故障定位、电子表格的调试、Web服务和硬件设计,以及生物系统的分析等.受这些不同用途的启发,近年来MBD算法改进成效显著.然而,对体系庞大、结构复杂的系统,需要对现有方法进一步改进.由于求解诊断解在计算上具有挑战性,因此相继提出了一些通过压缩模型的MBD算法来提高诊断效率,如基于统治的多观测压缩模型(dominated-based compacted model with multiple observations,D-CMMO)算法.对于给定多个观测值且注入1个以上错误需要大量时间的诊断问题,提出了一个新的诊断模型CCM(cardinality-constrained compacted model)来解决.基于基数约束的压缩模型算法使用2种方法对求解过程进行优化:首先,利用系统观测的故障输出和故障组件数量之间的约束关系来限制目标解的范围;其次,通过对假设集采用单次入队方法,进而有效提升MaxSAT(maximum satisfiability)求解器的性能.此外,在ISCAS85和ITC99基准测试用例上的实验结果表明,与目前最新的MBD求解方法D-CMMO相比,上述2种优化方法有效缩小了MBD问题的求解范围,降低MaxSAT求解器搜索目标解的难度,进而能在更短的时间内返回一个诊断解.在平均状况下,CCM方法相比D-CMMO方法求解效率分别提升64.5%和92.8%.展开更多
针对传统的数据库管理系统无法很好地学习谓词之间的交互以及无法准确地估计复杂查询的基数问题,提出了一种树形结构的长短期记忆神经网络(Tree Long Short Term Memory, TreeLSTM)模型建模查询,并使用该模型对新的查询基数进行估计.所...针对传统的数据库管理系统无法很好地学习谓词之间的交互以及无法准确地估计复杂查询的基数问题,提出了一种树形结构的长短期记忆神经网络(Tree Long Short Term Memory, TreeLSTM)模型建模查询,并使用该模型对新的查询基数进行估计.所提出的模型考虑了查询语句中包含的合取和析取运算,根据谓词之间的操作符类型将子表达式构建为树形结构,根据组合子表达式向量来表示连续向量空间中的任意逻辑表达式.TreeLSTM模型通过捕捉查询谓词之间的顺序依赖关系从而提升基数估计的性能和准确度,将TreeLSTM与基于直方图方法、基于学习的MSCN和TreeRNN方法进行了比较.实验结果表明:TreeLSTM的估算误差比直方图、MSCN、TreeRNN方法的误差分别降低了60.41%,33.33%和11.57%,该方法显著提高了基数估计器的性能.展开更多
多方隐私集合交集(multiparty private set intersection,MPSI)作为安全计算领域一种保护数据安全的计算技术,支持在不泄露任何参与方隐私的前提下,计算多个参与方数据集的交集,可通过同态加密、不经意传输等技术手段实现.但现有基于同...多方隐私集合交集(multiparty private set intersection,MPSI)作为安全计算领域一种保护数据安全的计算技术,支持在不泄露任何参与方隐私的前提下,计算多个参与方数据集的交集,可通过同态加密、不经意传输等技术手段实现.但现有基于同态加密的MPSI协议存在计算效率低、交互轮数多等问题,且通过交互无法实现交集用户保密数据的计算.为此,首先基于布隆过滤器和ElGamal算法提出了n方交集用户的秘密信誉值比较协议.进一步针对查询交集失败的问题,基于信誉值过滤器和多密钥加解密,提出用户交集基数协议并完成多方秘密信誉值评估.实验结果表明,研究提出的2种协议满足半诚实安全,可抵抗n-1个参与方的合谋且执行时间优于其他方案.展开更多
文摘基于模型诊断(MBD)方法在不同的环境中有越来越多的用途,包括软件故障定位、电子表格的调试、Web服务和硬件设计,以及生物系统的分析等.受这些不同用途的启发,近年来MBD算法改进成效显著.然而,对体系庞大、结构复杂的系统,需要对现有方法进一步改进.由于求解诊断解在计算上具有挑战性,因此相继提出了一些通过压缩模型的MBD算法来提高诊断效率,如基于统治的多观测压缩模型(dominated-based compacted model with multiple observations,D-CMMO)算法.对于给定多个观测值且注入1个以上错误需要大量时间的诊断问题,提出了一个新的诊断模型CCM(cardinality-constrained compacted model)来解决.基于基数约束的压缩模型算法使用2种方法对求解过程进行优化:首先,利用系统观测的故障输出和故障组件数量之间的约束关系来限制目标解的范围;其次,通过对假设集采用单次入队方法,进而有效提升MaxSAT(maximum satisfiability)求解器的性能.此外,在ISCAS85和ITC99基准测试用例上的实验结果表明,与目前最新的MBD求解方法D-CMMO相比,上述2种优化方法有效缩小了MBD问题的求解范围,降低MaxSAT求解器搜索目标解的难度,进而能在更短的时间内返回一个诊断解.在平均状况下,CCM方法相比D-CMMO方法求解效率分别提升64.5%和92.8%.
文摘针对传统的数据库管理系统无法很好地学习谓词之间的交互以及无法准确地估计复杂查询的基数问题,提出了一种树形结构的长短期记忆神经网络(Tree Long Short Term Memory, TreeLSTM)模型建模查询,并使用该模型对新的查询基数进行估计.所提出的模型考虑了查询语句中包含的合取和析取运算,根据谓词之间的操作符类型将子表达式构建为树形结构,根据组合子表达式向量来表示连续向量空间中的任意逻辑表达式.TreeLSTM模型通过捕捉查询谓词之间的顺序依赖关系从而提升基数估计的性能和准确度,将TreeLSTM与基于直方图方法、基于学习的MSCN和TreeRNN方法进行了比较.实验结果表明:TreeLSTM的估算误差比直方图、MSCN、TreeRNN方法的误差分别降低了60.41%,33.33%和11.57%,该方法显著提高了基数估计器的性能.
文摘多方隐私集合交集(multiparty private set intersection,MPSI)作为安全计算领域一种保护数据安全的计算技术,支持在不泄露任何参与方隐私的前提下,计算多个参与方数据集的交集,可通过同态加密、不经意传输等技术手段实现.但现有基于同态加密的MPSI协议存在计算效率低、交互轮数多等问题,且通过交互无法实现交集用户保密数据的计算.为此,首先基于布隆过滤器和ElGamal算法提出了n方交集用户的秘密信誉值比较协议.进一步针对查询交集失败的问题,基于信誉值过滤器和多密钥加解密,提出用户交集基数协议并完成多方秘密信誉值评估.实验结果表明,研究提出的2种协议满足半诚实安全,可抵抗n-1个参与方的合谋且执行时间优于其他方案.