A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
Separation issue is one of the most important problems about cloud computing security. Tenants should be separated from each other based on cloud infrastructure and different users from one tenant should be separated ...Separation issue is one of the most important problems about cloud computing security. Tenants should be separated from each other based on cloud infrastructure and different users from one tenant should be separated from each other with the constraint of security policies. Learning from the notion of trusted cloud computing and trustworthiness in cloud, in this paper, a multi-level authorization separation model is formally described, and a series of rules are proposed to summarize the separation property of this model. The correctness of the rules is proved. Furthermore, based on this model, a tenant separation mechanism is deployed in a real world mixed-critical information system. Performance benchmarks have shown the availability and efficiency of this mechanism.展开更多
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
基金supported by the Fundamental Research funds for the central Universities of China (No. K15JB00190)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120009120010)the Program for Innovative Research Team in University of Ministry of Education of China (IRT201206)
文摘Separation issue is one of the most important problems about cloud computing security. Tenants should be separated from each other based on cloud infrastructure and different users from one tenant should be separated from each other with the constraint of security policies. Learning from the notion of trusted cloud computing and trustworthiness in cloud, in this paper, a multi-level authorization separation model is formally described, and a series of rules are proposed to summarize the separation property of this model. The correctness of the rules is proved. Furthermore, based on this model, a tenant separation mechanism is deployed in a real world mixed-critical information system. Performance benchmarks have shown the availability and efficiency of this mechanism.