期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向基因调控网络的基因关联分析算法
1
作者 李志杰 廖莎 +1 位作者 刘安丰 李青蓝 《计算机工程与应用》 北大核心 2025年第3期155-165,共11页
基因调控网络是基于微阵列基因表达数据,对基因之间表达关系依赖程度的一种仿真或重建。从基因表达数据挖掘基因之间存在的一定程度因果关系,对重构基因调控网络具有十分重要的意义。提出一种基于频繁原子序列关联熵的基因关联分析算法... 基因调控网络是基于微阵列基因表达数据,对基因之间表达关系依赖程度的一种仿真或重建。从基因表达数据挖掘基因之间存在的一定程度因果关系,对重构基因调控网络具有十分重要的意义。提出一种基于频繁原子序列关联熵的基因关联分析算法,通过基因关联熵有效识别基因之间的因果关系,并采用启发式搜索策略构建基因关联贝叶斯调控网络(gene association based Bayesian regulatory,GABR)。与基因贝叶斯网络描述基因表达水平值之间依赖关系不同,GABR是一种基因序列贝叶斯网络,基因关联分析对象是生物组织样本的基因表达值排序并置换为基因列下标所形成的序列。算法的优势在于基因变量取值原子序列,该基因为原子序列的结果,基因关联熵以及条件概率分布的计算更符合基因表达数据分析的生物本质特征。ALARM网络模拟数据的实验结果表明,基因关联分析算法性能明显优于同类算法。在酵母菌微阵列基因数据GDS2267和小鼠胚胎基因GSE76118等GEO数据集进行实验,测试结果表明GABR方法重构的基因调控网络具有较高的有效性和鲁棒性。 展开更多
关键词 基因表达数据 基因调控 频繁原子序列 关联熵 基因序列贝叶斯网络
在线阅读 下载PDF
基于基因关联分析的贝叶斯网络疾病样本分类算法
2
作者 李志杰 廖旭红 +1 位作者 李元香 李青蓝 《计算机应用》 CSCD 北大核心 2024年第11期3449-3458,共10页
基因表达数据作为生物学中一种特定类型的大数据,尽管基因表达值都是普通的实数值,但它们的相似性不是基于欧氏距离度量,而是基于基因表达值是否展现同升同降趋势。目前的基因贝叶斯网络以基因表达水平值为节点随机变量,没有体现这种子... 基因表达数据作为生物学中一种特定类型的大数据,尽管基因表达值都是普通的实数值,但它们的相似性不是基于欧氏距离度量,而是基于基因表达值是否展现同升同降趋势。目前的基因贝叶斯网络以基因表达水平值为节点随机变量,没有体现这种子空间模式的相似性。因此,提出基于基因关联分析的贝叶斯网络疾病分类算法(BCGA),从带类标签的疾病样本-基因表达数据中学习贝叶斯网络并预测新疾病样本的分类。首先,将疾病样本离散化过滤以选择基因,并将降维后的基因表达值排序和置换为基因列下标;其次,分解基因列下标序列为长度为2的原子序列集合,而这个集合的频繁原子序列对应一对基因的关联关系;最后,通过基因关联熵度量因果关系,并用于贝叶斯网络结构学习。BCGA的参数学习也变得很容易,基因节点的条件概率分布只要统计该基因的原子序列和父节点基因的原子序列出现频次即可。在多个肿瘤和非肿瘤基因表达数据集上的实验结果表明,相较于已有的同类算法,BCGA的疾病分类准确率明显提高,分析时间有效缩短;另外,BCGA使用基因关联熵代替条件独立性,使用基因原子序列代替基因表达值,可以更好地拟合基因表达数据。 展开更多
关键词 基因表达数据 频繁原子序列 基因关联熵 基因序列贝叶斯网络 疾病分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部