期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于迭代压缩U型网络的煤颗粒分割与粒度分析方法
1
作者 程德强 张瑞 +4 位作者 谢同喜 刘敬敬 郑丽娟 寇旗旗 江鹤 《煤炭学报》 北大核心 2025年第2期1362-1375,共14页
煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘... 煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘细节起着关键作用,直接影响分割结果的准确性。基于卷积神经网络架构的U型网络过于注重局部信息,忽视了全局信息的重要性,容易导致过分割现象。而基于Transformer的网络利用多头自注意力机制有效地建模了全局信息,但却没有充分利用边缘细节特征,导致煤颗粒漏分割问题。为了解决上述问题,本研究提出了迭代压缩U型网络(Iterative Squeeze UNet,ISUNet)用于煤颗粒粒度分析。ISUNet模型引入了压缩激励空洞空间金字塔池化模块和基于Transformer的多路迭代编码器。压缩激励空洞空间金字塔池化模块通过增强不同尺度特征的通道信息和全局上下文信息,解决了煤粒过分割问题。编码器中的多头自注意力模块将ResNet50的卷积特征作为其中一个输入,通过点乘自注意力机制不断强化重要的边缘细节特征,解决了煤粒漏分割问题。与5种经典图像分割模型和4种目前主流的分割模型相比,ISUNet表现出色。相较于经典的分割模型TransUNet来说,平均交并比提高了6.6%,准确率提高了0.3%,召回率提高了7.0%,相较于目前主流的图像分割大模型Segment Anything来说,平均交并比提高了4.6%,准确率提高了0.2%,召回率提高了4.9%。在煤粒粒度测量方面,准确率达到了97.49%。这些试验结果充分证实了ISUNet在煤粒粒度分析中的有效性和优越性。 展开更多
关键词 煤粒粒度分析 图像分割 基于transformer的多路迭代编码器 压缩激励空洞空间金字塔池化 U型网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部