期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
基于Transformer编码器的CAN/CAN-FD协议入侵检测研究
1
作者 曹举阳 王思山 +4 位作者 司华超 张贵海 吴奇 汪涛 王文涛 《计算机工程与应用》 北大核心 2025年第18期300-308,共9页
汽车总线CAN/CAN-FD协议以广播的形式传播信息,报文容易被截取,极易受到攻击。为解决智能网联汽车CAN/CAN-FD总线的入侵攻击识别问题,提出了一种改进的Transformer编码器入侵检测模型。该模型在公开数据集CAN-FD Intrusion上进行各种攻... 汽车总线CAN/CAN-FD协议以广播的形式传播信息,报文容易被截取,极易受到攻击。为解决智能网联汽车CAN/CAN-FD总线的入侵攻击识别问题,提出了一种改进的Transformer编码器入侵检测模型。该模型在公开数据集CAN-FD Intrusion上进行各种攻击的入侵检测,检测率、精确率、召回率和F1均超过99.9%。通过在公开数据集上与典型模型的对比评测,实验结果表明改进的Transformer编码器模型在各项评价指标均优于对比模型。为了验证此模型的泛化性,通过在智能网联汽车实车CAN/CAN-FD总线上注入DoS和Fuzzing攻击制作实车数据集,并使用该模型对数据集进行检测,实验结果表明该模型具有较高的识别率和较好的泛化性。 展开更多
关键词 CAN-FD 入侵检测 transformer编码器 DoS攻击 Fuzzing攻击
在线阅读 下载PDF
融合动态图嵌入和Transformer自编码器的网络异常检测
2
作者 张安勤 丁志锋 《计算机工程》 北大核心 2025年第4期47-56,共10页
网络异常检测的目的在于及时识别并响应网络中的恶意活动和潜在威胁。大多数基于图嵌入的异常检测方法主要用于静态图,忽略了细粒度的时间信息,无法捕获动态网络行为的连续性,从而降低了网络异常检测性能。为了提高动态网络异常检测的... 网络异常检测的目的在于及时识别并响应网络中的恶意活动和潜在威胁。大多数基于图嵌入的异常检测方法主要用于静态图,忽略了细粒度的时间信息,无法捕获动态网络行为的连续性,从而降低了网络异常检测性能。为了提高动态网络异常检测的效率和准确性,提出一个融合动态图嵌入和Transformer自编码器的网络异常检测方法。该方法利用时间游走的图嵌入技术捕获网络拓扑结构和细粒度的时间信息,结合对比损失的Transformer自编码器来优化节点嵌入表示并捕获长期依赖和全局信息,增强了模型对动态网络的感知能力,能更好地捕捉动态网络中随时间变化的事件,识别网络中的恶意行为。在公开的网络安全领域数据集上进行的大量实验结果表明,该方法在LANL-2015数据集上的真阳率(TPR)为94.3%、假阳率(FPR)为5.7%、曲线下面积(AUC)为98.3%,在OpTC数据集上的TPR为99.9%、FPR为0.01%、AUC为99.9%,异常检测结果优于基准方法。上述结果说明了该方法可以有效地学习动态网络中的拓扑和长短期时间依赖信息,识别网络中的异常行为。 展开更多
关键词 动态图嵌入 transformer编码器 网络异常检测 恶意行为 长短期时间依赖
在线阅读 下载PDF
FMA-DETR:一种无编码器的Transformer目标检测方法 被引量:1
3
作者 周全 倪英豪 +2 位作者 莫玉玮 康彬 张索非 《信号处理》 CSCD 北大核心 2024年第6期1160-1170,共11页
DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导... DETR是第一个将Transformer应用于目标检测的视觉模型。在DETR结构中,Transformer编码器对已高度编码的图像特征进行再编码,这在一定程度上导致了网络功能的重复。此外,由于Transformer编码器具有多层深度堆叠的结构和巨大的参数量,导致网络优化变得困难,模型收敛速度缓慢。本文设计了一种无编码器的Transformer目标检测网络模型。由于不需要引入Transformer编码器,本文的模型比DETR参数量更小、计算量更低、模型收敛速度更快。但是,直接去除Transformer编码器将降低网络的表达能力,导致Transformer解码器无法从数量庞大的图像特征中关注到包含目标的图像特征,从而使检测性能大幅降低。为了缓解这个问题,本文提出了一种混合特征注意力(fusion-feature mixing attention,FMA)机制,它通过自适应特征混合和通道交叉注意力弥补检测网络特征表达能力的下降,将其应用于Transformer解码器可以减轻由于去除Transformer编码器带来的性能降低。在MS-COCO数据集上,本文网络模型(称为FMA-DETR)实现了与DETR相近的性能表现,同时本文的模型拥有更快的收敛速度、更小的参数量以及更低的计算量。本文还进行了大量消融实验来验证所提出方法的有效性。 展开更多
关键词 目标检测 transformer 编码器 DETR 混合注意力
在线阅读 下载PDF
一种基于Transformer编码器与LSTM的飞机轨迹预测方法 被引量:1
4
作者 李明阳 鲁之君 +1 位作者 曹东晶 曹世翔 《航天返回与遥感》 CSCD 北大核心 2024年第2期163-176,共14页
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和... 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。 展开更多
关键词 轨迹预测 transformer编码器 神经网络 飞机目标 transformer-Encoder-LSTM模型
在线阅读 下载PDF
双向自回归Transformer与快速傅里叶卷积增强的壁画修复 被引量:1
5
作者 陈永 张世龙 杜婉君 《湖南大学学报(自然科学版)》 北大核心 2025年第4期1-15,共15页
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer... 针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法. 展开更多
关键词 壁画修复 双向自回归transformer 掩码语言模型 快速傅里叶卷积 语义增强
在线阅读 下载PDF
基于循环双向Transformer的伪CT图像生成方法
6
作者 肖宁 赵俊 +3 位作者 贾保平 强彦 赵涓涓 吕亚丽 《计算机辅助设计与图形学学报》 北大核心 2025年第6期994-1005,共12页
磁共振成像引导的放射治疗可以根据肿瘤和对器官的威胁情况实时调整治疗计划,依靠使用磁共振成像生成伪计算机断层扫描进行放射治疗.目前,伪层析成像的生成技术基于对抗性网络的生成方法,但它在训练过程中使用像素级损失更新网络参数,... 磁共振成像引导的放射治疗可以根据肿瘤和对器官的威胁情况实时调整治疗计划,依靠使用磁共振成像生成伪计算机断层扫描进行放射治疗.目前,伪层析成像的生成技术基于对抗性网络的生成方法,但它在训练过程中使用像素级损失更新网络参数,很容易导致模式崩溃,生成不稳定的伪计算机断层扫描.为了精准地实现基于磁共振图像的伪计算机断层扫描生成,利用视觉Transformer的上下文敏感性以及卷积算子的归纳偏置,提出一种循环双向Transformer医学图像合成方法.在编码预测阶段,循环双向Transformer利用U-Net编码得到的码本表示图像,并使用非自回归编码与向量量化方式缩短生成码本的长度,生成局部真实并且全局一致的图像;使用归一化互信息作为损失函数,并加入了循环一致性损失解决数据不匹配的问题.在颅脑磁共振成像数据集TCGA-GBM与CPTAC-GBM上进行一系列实验,验证了所提方法在图像生成任务上的有效性;该方法的MAE, PSNR和SSIM分别达到86.3, 25.96 dB和0.897;与对比方法相比,该方法也表现出优越的性能. 展开更多
关键词 双向transformer 伪计算机断层扫描 循环一致性 颅脑磁共振成像 U型网络
在线阅读 下载PDF
改进Transformer解码器的端到端语音识别 被引量:1
7
作者 胡恒博 牛铜 何振华 《计算机应用》 北大核心 2025年第S1期95-100,共6页
Transformer模型架构在序列到序列任务中可以很好地将注意力分散到整个输入上以学习长期依赖关系,然而,在语音识别中,文本输出和语音输入是单调对齐的。针对Transformer解码器无法较好地捕获局部特征以进行单调对齐的问题,提出一种改进... Transformer模型架构在序列到序列任务中可以很好地将注意力分散到整个输入上以学习长期依赖关系,然而,在语音识别中,文本输出和语音输入是单调对齐的。针对Transformer解码器无法较好地捕获局部特征以进行单调对齐的问题,提出一种改进的Transformer解码器。将Transformer解码器中的2种注意力机制拆分为2个单独模块,再使用交叉注意力进行更高效的局部特征捕获。在开源中文普通话AISHELL-1数据集上的实验结果表明,使用能够捕获局部特征的编码器时,该解码器相较于Transformer解码器有着更好的识别效果。具体地,当编码器为Conformer时,字错误率(CER)降低了16.19%,且收敛速度更快,而在使用了连接时序分类(CTC)进行辅助解码后,CER降低了5.08%,最终的CER为4.67%。 展开更多
关键词 交叉注意力 transformer码器 Conformer编码器 语音识别 局部特征
在线阅读 下载PDF
编码器-解码器结构的刀具磨损状态预测研究
8
作者 刘本刚 吴文江 +2 位作者 赵丹 王裴岩 彭春杨 《小型微型计算机系统》 北大核心 2025年第6期1530-1536,共7页
针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性... 针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性能最优,其中Transformer-BiGRU组合模型F1值达69.61%,显著优于GS-XGBoost(58.01%)、Attention-CNN(57.65%)等方法,研究表明基于编码器-解码器的刀具状态预测模型在航空钛合金复杂切削工况下具有显著优势,未来可通过模型优化和扩充样本数据进一步提升其性能. 展开更多
关键词 编码器-解码器结构 刀具磨损状态预测 transformer 双向循环神经网络 航空钛合金高效加工
在线阅读 下载PDF
基于标签感知变分自编码器的多标签分类
9
作者 孙宏健 徐鹏宇 +2 位作者 刘冰 景丽萍 于剑 《计算机科学与探索》 北大核心 2025年第3期714-723,共10页
随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,... 随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,并未考虑到特征和标签之间的语义关联性,缺乏对特征嵌入空间的有效约束,从而导致学习到的特征嵌入针对性不足。在标签相关性学习方面,现有的大多数方法主要关注低阶标签相关性,在面对复杂的实际标签场景时,多个标签之间的高阶相关性学习不足的问题变得更为突出。为解决上述问题,从嵌入表示学习和标签相关性学习出发,提出了一种基于标签感知变分自编码器的多标签分类方法。针对嵌入表示学习,提出使用特征和标签双流变分自编码器同时学习和对齐特征和标签的嵌入空间,对特征嵌入空间添加标签引导来增强特征嵌入。采用基于标签语义的交叉注意力机制,将特定标签信息加入到特征嵌入中,最终获得标签感知后的判别性特征嵌入。针对标签相关性学习,采用共享解码器中的多层自注意力机制,充分融合多个标签的相似性信息,通过不同标签间的共现交互,学习到标签高阶相关性表示并用于交叉感知特征嵌入。在四个不同领域的数据集上得到的实验结果表明,提出的方法能够有效增强特征和标签嵌入,并充分捕获标签之间高阶相关性信息用于多标签分类任务,通过与多个最先进算法在多个评价指标上进行比较分析,验证了提出的方法在性能上的显著优越性。 展开更多
关键词 多标签分类 嵌入空间学习 变分自动编码器 transformer 标签相关性
在线阅读 下载PDF
基于优化卷积自编码器的机床进给轴健康状态监测
10
作者 吴楚杰 崔益铭 +3 位作者 马骋 王强 赵雷鸣 刘阔 《组合机床与自动化加工技术》 北大核心 2025年第5期1-6,共6页
在实际工程应用中,进给轴从健康到故障时间跨度长、运行工况复杂、故障数据获取成本高,导致故障数据与健康数据存在严重的不平衡。而传统数据驱动健康监测方法往往需要大量标签数据,且监测结果依赖于标签的数量和准确性。如何在有限数据... 在实际工程应用中,进给轴从健康到故障时间跨度长、运行工况复杂、故障数据获取成本高,导致故障数据与健康数据存在严重的不平衡。而传统数据驱动健康监测方法往往需要大量标签数据,且监测结果依赖于标签的数量和准确性。如何在有限数据下,进行健康监测是目前面临的一大挑战。针对这一问题提出了一种基于优化卷积自编码器的机床进给轴健康状态监测方法,首先采用小波包对进给轴振动信号与功率信号进行去噪重构,随后对降噪后的振动信号与功率信号进行时域、频域特征提取形成振动功率多源数据集,之后搭建一种基于卷积自编码器(CAE)与双向长短时记忆网络(BiLSTM)相结合的进给轴健康监测网络,同时在网络中融合残差网络(Res)和注意力模块(SENet)提高模型收敛能力与监测准确性。试验表明所提模型可以仅采用健康数据进行训练,实现进给轴健康状态监测,健康状态监测准确率可达97.7%,优于传统CAE模型。 展开更多
关键词 残差网络 注意力机制 双向长短期记忆网络 卷积自编码器 进给轴 健康状态监测
在线阅读 下载PDF
基于掩码自编码器多尺度特征融合的桥梁裂缝分割方法
11
作者 尹京 袁磊 钱胜胜 《铁道建筑》 北大核心 2025年第4期50-56,共7页
桥梁裂缝检测是保障公共基础设施安全的重要研究方向,而复杂形状裂缝的自动分割始终面临局部细节提取不足及全局语义捕捉不全面的问题。本文以复杂桥梁表观裂缝为研究对象,围绕如何高效整合局部与全局特征展开研究,提出了一种基于掩码... 桥梁裂缝检测是保障公共基础设施安全的重要研究方向,而复杂形状裂缝的自动分割始终面临局部细节提取不足及全局语义捕捉不全面的问题。本文以复杂桥梁表观裂缝为研究对象,围绕如何高效整合局部与全局特征展开研究,提出了一种基于掩码自编码器的多尺度特征融合裂缝分割方法。该方法通过构建基于Transformer的多尺度融合网络,实现卷积神经网络与Swin‑Transformer块的结合,有效捕获图像中细微结构与整体语义。本文设计的掩码自编码器模块利用其遮挡感知能力对图像中的背景噪声进行自动过滤,从而增强裂缝分割的连续性和准确性。为验证该方法的有效性,在两个公开桥梁裂缝数据集上开展了试验,并与现有主流算法进行对比。试验结果表明,所提方法F1分数比传统方法有显著提高,充分展示了其在桥梁裂缝自动分割检测领域的应用潜力。 展开更多
关键词 桥梁裂缝分割 transformer 多尺度特征 编码器-解码器 噪声抑制
在线阅读 下载PDF
基于CNN‐Head Transformer编码器的中文命名实体识别 被引量:8
12
作者 史占堂 马玉鹏 +1 位作者 赵凡 马博 《计算机工程》 CAS CSCD 北大核心 2022年第10期73-80,共8页
基于多头自注意力机制的Transformer作为主流特征提取器在多种自然语言处理任务中取得了优异表现,但应用于命名实体识别任务时存在一字多词、增加额外存储与词典匹配时间等问题。提出一种CNN-Head Transformer编码器(CHTE)模型,在未使... 基于多头自注意力机制的Transformer作为主流特征提取器在多种自然语言处理任务中取得了优异表现,但应用于命名实体识别任务时存在一字多词、增加额外存储与词典匹配时间等问题。提出一种CNN-Head Transformer编码器(CHTE)模型,在未使用外部词典和分词工具的基础上,通过自注意力机制捕获全局语义信息,利用不同窗口大小的CNN获取Transformer中6个注意力头的Value向量,使CHTE模型在保留全局语义信息的同时增强局部特征和潜在词信息表示,并且应用自适应的门控残差连接融合当前层和子层特征,提升了Transformer在命名实体识别领域的性能表现。在Weibo和Resume数据集上的实验结果表明,CHTE模型的F1值相比于融合词典信息的Lattice LSTM和FLAT模型分别提升了3.77、2.24和1.30、0.31个百分点,具有更高的中文命名实体识别准确性。 展开更多
关键词 命名实体识别 自注意力机制 transformer编码器 卷积神经网络 残差连接
在线阅读 下载PDF
基于双自编码器和Transformer网络的异常检测方法 被引量:9
13
作者 周佳航 邢红杰 《计算机应用》 CSCD 北大核心 2023年第1期22-29,共8页
基于自编码器(AE)的异常检测方法利用重构误差判断待测样本是正常数据还是异常数据。然而,上述方法在正常数据与异常数据上产生的重构误差非常接近,导致部分异常数据很容易被错分为正常数据。为解决上述问题,提出一种由两个并行的AE和一... 基于自编码器(AE)的异常检测方法利用重构误差判断待测样本是正常数据还是异常数据。然而,上述方法在正常数据与异常数据上产生的重构误差非常接近,导致部分异常数据很容易被错分为正常数据。为解决上述问题,提出一种由两个并行的AE和一个Transformer网络组成的异常检测方法——DATN-ND。首先,Transformer网络利用输入样本的瓶颈特征生成伪异常数据的瓶颈特征,从而在训练集中增加异常数据信息;其次,双AE将带有异常数据信息的瓶颈特征尽可能地重构为正常数据,增加异常数据与正常数据的重构误差差别。与记忆增强自编码器(MemAE)相比,DATN-ND在MNIST、Fashion-MNIST、CIFAR-10数据集上ROC曲线下面积(AUC)分别提升6.8、12.0和2.5个百分点。实验结果表明,DATN-ND能够有效扩大正常数据和异常数据在重构误差上的差别。 展开更多
关键词 异常检测 编码器 重构误差 单类分类 transformer网络
在线阅读 下载PDF
基于双向稀疏Transformer的多变量时序分类模型 被引量:5
14
作者 王慧强 陈楚皓 +1 位作者 吕宏武 米海林 《小型微型计算机系统》 CSCD 北大核心 2024年第3期555-561,共7页
针对多变量时序(Multivariate Time Series,MTS)分类中长序列数据难以捕捉时序特征的问题,提出一种基于双向稀疏Transformer的时序分类模型BST(Bidirectional Sparse Transformer),提高了MTS分类任务的准确度.BST模型使用Transformer框... 针对多变量时序(Multivariate Time Series,MTS)分类中长序列数据难以捕捉时序特征的问题,提出一种基于双向稀疏Transformer的时序分类模型BST(Bidirectional Sparse Transformer),提高了MTS分类任务的准确度.BST模型使用Transformer框架,构建了一种基于活跃度得分的双向稀疏注意力机制.基于KL散度构建活跃度评价函数,并将评价函数的非对称问题转变为对称权重问题.据此,对原有查询矩阵、键值矩阵进行双向稀疏化,从而降低原Transformer模型中自注意力机制运算的时间复杂度.实验结果显示,BST模型在9个长序列数据集上取得最高平均排名,在临界差异图中领先第2名35.7%,对于具有强时序性的乙醇浓度数据集(Ethanol Concentration,EC),分类准确率提高30.9%. 展开更多
关键词 多变量时序分类 transformer 双向稀疏机制 活跃度评价函数
在线阅读 下载PDF
基于Transformer编码器的语义相似度算法研究 被引量:8
15
作者 乔伟涛 黄海燕 王珊 《计算机工程与应用》 CSCD 北大核心 2021年第14期158-163,共6页
语义相似度计算旨在计算文本之间在语义层面的相似程度,是自然语言处理中一项重要的任务。针对现有的计算方法不能充分表示句子的语义特征的问题,提出基于Transformer编码器的语义特征抽取的模型TEAM,利用Transformer模型的上下文语义... 语义相似度计算旨在计算文本之间在语义层面的相似程度,是自然语言处理中一项重要的任务。针对现有的计算方法不能充分表示句子的语义特征的问题,提出基于Transformer编码器的语义特征抽取的模型TEAM,利用Transformer模型的上下文语义编码能力充分提取句子内的语义信息,对句子进行深层语义编码。此外,通过引入交互注意力机制,在编码两个句子时利用交互注意力机制提取两个句子之间关联的相似特征,使模型更擅长捕捉句子内部重要的语义信息,提高了模型对语义的理解和泛化能力。实验结果表明,该模型在英文和中文的语义相似度计算任务上能够提高结果的准确性,较已有方法表现出更好的效果。 展开更多
关键词 语义相似度 transformer编码器 交互注意力机制 语义表示
在线阅读 下载PDF
基于Transformer编码器的中文命名实体识别模型 被引量:12
16
作者 司逸晨 管有庆 《计算机工程》 CAS CSCD 北大核心 2022年第7期66-72,共7页
命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式... 命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式难以获取词语信息。提出一种基于Transformer编码器的中文命名实体识别模型,在字嵌入过程中使用结合词典的字向量编码方法使字向量包含词语信息,同时针对Transformer编码器在注意力运算时丢失字符相对位置信息的问题,改进Transformer编码器的注意力运算并引入相对位置编码方法,最终通过条件随机场模型获取最优标签序列。实验结果表明,该模型在Resume和Weibo中文命名实体识别数据集上的F1值分别达到94.7%和58.2%,相比于基于双向长短期记忆网络和ID-CNN的命名实体识别模型均有所提升,具有更优的识别效果和更快的收敛速度。 展开更多
关键词 自然语言处理 中文命名实体识别 transformer编码器 条件随机场 相对位置编码
在线阅读 下载PDF
基于改进Transformer的持续血糖浓度预测模型
17
作者 徐鹤 杨丹丹 +1 位作者 刘思行 季一木 《数据采集与处理》 北大核心 2025年第4期1065-1081,共17页
糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型... 糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型,旨在提高模型对传感器提取数据的适应性。在该模型中,堆叠式降噪自编码器(Stacked denoising auto encoder,SDAE)被嵌入Transformer编码器的结构中,实现对输入数据的重构去噪和特征提取;然后,采用混合位置编码策略替代原来的单一绝对位置编码嵌入,同时将轻量级解码器引入Transformer模型中,替代原始结构复杂的解码器,聚合来自不同层次的特征信息,同时获取局部和全局特征;最后,通过搭建的SDAE-改进Transformer网络对CGM数据序列并行化训练,更全面地捕捉数据中的时序模式和复杂关联,提高预测性能。实验结果表明,该模型相较于传统方法在血糖预测任务中取得了显著的性能提升,证实了其在处理CGM数据时的有效性和鲁棒性。 展开更多
关键词 持续血糖监测 神经网络 堆叠降噪自编码器 transformer 注意力机制
在线阅读 下载PDF
基于双层注意力和深度自编码器的时间序列异常检测模型 被引量:2
18
作者 尹春勇 赵峰 《计算机工程与科学》 CSCD 北大核心 2024年第5期826-835,共10页
目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动... 目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动窗口大小;其次,采用卷积神经网络提取时间序列高维度空间特征;然后,提出具有堆叠式Dropout双向门循环单元网络作为自编码器的基本结构,从而捕捉时间序列的相关性特征;最后,引入双层注意力机制,进一步提取特征,选择更加关键的时间序列,从而提高异常检测准确率。为了验证该模型的有效性,将DA-CBG-AE与6种基准模型在8个数据集上进行比较。最终的实验结果表明,DA-CBG-AE获得了最优的F1值(0.863),并且其检测性能相比最新的基准模型Tad-GAN高出25.25%。 展开更多
关键词 异常检测 双层注意力机制 编码器 卷积神经网络 双向门循环单元
在线阅读 下载PDF
基于VMD和改进Transformer模型的镍镉蓄电池SOH预测研究
19
作者 于天剑 冯恩来 +1 位作者 伍珣 张庆东 《铁道科学与工程学报》 北大核心 2025年第7期3266-3279,共14页
动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode d... 动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode decomposition,VMD)和改进的Transformer模型,提出一种综合预测框架。首先,通过白鲸优化算法(beluga whale optimization,BWO)对VMD的超参数进行优化,利用VMD分解重构准确捕捉电池在其整个生命周期中的容量退化特性,消除蓄电池记忆效应对SOH预测研究带来的不良影响;其次,在Transformer编码模块中嵌入了长短时记忆网络自编码模块(long short-term memory network autoencoder,LSTM Autoencoder),以有效提取电池健康退化的短期特征信息并压缩数据维度,从而降低模型复杂度;最后,将Transformer解码层替换为全连接神经网络,以降低模型复杂度和减少预测误差累积现象,从而提高模型的预测性能和运行效率。并且在验证方案中,以实际动车组蓄电池为研究对象,通过消融实验以及横向对比实验双向证明研究算法具有最高的预测精度,输出预测结果在均方根误差、平均绝对误差相较于其他模型平均降低了60.83%和62.14%,在决定系数上平均提升了6.73%,具有高度的准确性和鲁棒性。可以实现对电池SOH实现精确的预测,对电池健康状态进行有效监控,为电池检修工作提供数据支撑和方法支持。 展开更多
关键词 镍镉蓄电池 SOH预测 变分模态分解 长短时记忆网络自编码器 改进transformer模型
在线阅读 下载PDF
基于Transformer编码器的智能电网虚假数据注入攻击检测 被引量:6
20
作者 陈冰 唐永旺 《计算机应用与软件》 北大核心 2022年第7期336-342,共7页
针对当前基于循环神经网络的智能电网虚假数据注入攻击(False Data Injection Attacks, FDIA)检测方法无法同时利用量测样本中前后参数信息和样本间参数关联关系的问题,提出一种基于Transformer编码器的FDIA检测框架。对连续时间样本数... 针对当前基于循环神经网络的智能电网虚假数据注入攻击(False Data Injection Attacks, FDIA)检测方法无法同时利用量测样本中前后参数信息和样本间参数关联关系的问题,提出一种基于Transformer编码器的FDIA检测框架。对连续时间样本数据进行归一化处理,结合相对位置信息得到连续时间样本向量。引入Transformer编码器,通过多头自注意力机制计算长距离依赖关系,得到连续时间样本的特征表示。将该特征表示输入到全连接神经网络层和Softmax层,输出后一时刻样本受到注入攻击的概率。在IEEE 14-bus和IEEE 30-bus中的仿真实验结果表明该方法切实可行,相较于次优结果,准确率平均提高7.41%,正报率平均提高4.51%,误报率平均降低60.99%。 展开更多
关键词 transformer编码器 连续时间 多头注意力 智能电网 虚假数据
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部