期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于T-S模型的模糊自适应PSO算法
1
作者 郭成 李群湛 阴艳超 《系统仿真学报》 CAS CSCD 北大核心 2009年第14期4335-4338,共4页
惯性权重的取值对改善微粒群优化(Particle Swarm Optimization,PSO)算法的收敛性起着关键作用。针对惯性权重的取值问题,提出一种基于T-S模型的模糊自适应PSO(T-SPSO)算法。算法根据当前种群最优适应值和惯性权重,自适应更新惯性权重取... 惯性权重的取值对改善微粒群优化(Particle Swarm Optimization,PSO)算法的收敛性起着关键作用。针对惯性权重的取值问题,提出一种基于T-S模型的模糊自适应PSO(T-SPSO)算法。算法根据当前种群最优适应值和惯性权重,自适应更新惯性权重取值,改善了算法收敛性。最后以典型优化问题的实例仿真验证了所提出算法有效性。 展开更多
关键词 微粒群优化算法 惯性权重 t-s模糊模型 t-spso 收敛性
在线阅读 下载PDF
基于改进自适应粒子群算法的T-S模型辨识 被引量:3
2
作者 丁学明 张久忠 沈业茂 《控制工程》 CSCD 北大核心 2011年第6期952-955,共4页
提出基于改进自适应粒子群算法(Improved Self-adaptation Particle Swarm Optimiza-tion,PSO)的T-S模糊模型辨识方法。首先,利用核函数的模糊聚类算法划分数据空间,尽可能少地提取模糊规则,并消除孤立点、噪声点数据等的不利影响;其次... 提出基于改进自适应粒子群算法(Improved Self-adaptation Particle Swarm Optimiza-tion,PSO)的T-S模糊模型辨识方法。首先,利用核函数的模糊聚类算法划分数据空间,尽可能少地提取模糊规则,并消除孤立点、噪声点数据等的不利影响;其次,基于ISPSO算法进行参数辨识,将待辨识的参数划分为若干粒子,自适应更新飞行速度,动态修改惯性权因子,惯性权因子呈非线性动态变化,不仅可以克服PSO算法陷入局部最优的早熟,失去多样性,而且可以提高粒子在全局最优位置绕行时的稳定性。提出的方法使得T-S模型辨识达到较高的辨识精度。仿真实例和比较分析证明了该算法的有效性。 展开更多
关键词 t-s模型 核函数 模糊聚类 pso算法
在线阅读 下载PDF
利用T-S模糊自适应PSO算法优化PID参数 被引量:3
3
作者 郭成 李群湛 《计算机工程与应用》 CSCD 北大核心 2009年第3期245-248,共4页
针对微粒群优化算法存在的早熟问题,提出了一种基于T-S模型的模糊自适应PSO算法(T-SPSO算法)。算法依据种群当前最优性能指标和惯性权重值所制定T-S规则,动态自适应惯性权重取值,改善了PSO算法的收敛性。将该算法应用于PID控制器的参数... 针对微粒群优化算法存在的早熟问题,提出了一种基于T-S模型的模糊自适应PSO算法(T-SPSO算法)。算法依据种群当前最优性能指标和惯性权重值所制定T-S规则,动态自适应惯性权重取值,改善了PSO算法的收敛性。将该算法应用于PID控制器的参数整定,可得到更优的控制器参数。仿真结果验证了所提出算法的有效性和所设计控制器的优越性。 展开更多
关键词 微粒群优化算法 PID控制 参数优化 基于t-s模型的模糊自适应pso算法 早熟
在线阅读 下载PDF
控制系统的辨识建模及微粒群优化设计 被引量:2
4
作者 郭成 李群湛 《计算机工程与应用》 CSCD 北大核心 2010年第15期57-59,92,共4页
针对控制系统的传递函数建模与控制器的参数优化问题,提出了基于Prony和微粒群优化(PSO)算法的设计方案。首先在被控对象的输入端施加一个脉冲信号,然后对其输出信号进行Prony分析,得出该被控对象的传递函数,最后采用改进PSO算法进行控... 针对控制系统的传递函数建模与控制器的参数优化问题,提出了基于Prony和微粒群优化(PSO)算法的设计方案。首先在被控对象的输入端施加一个脉冲信号,然后对其输出信号进行Prony分析,得出该被控对象的传递函数,最后采用改进PSO算法进行控制器的参数优化设计。基于辨识的Prony算法可快速准确得出被控对象的传递函数;基于T-S模型模糊自适应的改进PSO算法(T-SPSO算法)依据种群当前最优性能指标和惯性权重自适应惯性权重取值,较好解决了PSO算法的早熟问题,可以更好地优化控制器参数。该方案实现了控制系统的精确建模与优化设计,仿真结果验证了所提方案的有效性。 展开更多
关键词 传递函数 辨识 PRONY算法 微粒群算法 基于t-s模型的pso算法(t-spso) 比例-积分-微分(PID)控制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部