为提升移动流媒体的用户体验质量(quality of experience,QoE)和设备续航时长,提出一种基于移动设备电量状态的QoE模型,模型的参数包括初始延迟、重新缓冲、平均视频质量、码率切换平滑度以及设备电量状态。在模型的基础上,给出一种基...为提升移动流媒体的用户体验质量(quality of experience,QoE)和设备续航时长,提出一种基于移动设备电量状态的QoE模型,模型的参数包括初始延迟、重新缓冲、平均视频质量、码率切换平滑度以及设备电量状态。在模型的基础上,给出一种基于网络吞吐量,同时又考虑设备电量状态的码率自适应策略。策略能避免客户端在设备剩余电量处于中、低状态时,请求高码率视频,导致过多的电池电量消耗。实验结果表明,该策略能有效平衡不同电量状态下用户对视频质量和设备续航的需求。展开更多
近年来,基于HTTP(Hyper Text Transport Protocol)的网络视频流传输方式越来越受到人们的关注,同时出现了若干相近的解决方案,实现了在HTTP上的动态自适应视频流传输。MPEG和3GPP在这些方案的基础上制定了一个新的基于HTTP的网络动态自...近年来,基于HTTP(Hyper Text Transport Protocol)的网络视频流传输方式越来越受到人们的关注,同时出现了若干相近的解决方案,实现了在HTTP上的动态自适应视频流传输。MPEG和3GPP在这些方案的基础上制定了一个新的基于HTTP的网络动态自适应流传输标准——DASH,并成为ISO/IEC国际标准于2012年正式发布。DASH系统工作于普通的Web服务器/客户端方式,它将同一内容的多个不同质量的视频流分片、定位和描述,使得这些视频分片能够如同普通文件一样通过HTTP协议在网络中传输。用户可以向服务器请求所需的视频,动态自适应地根据自己的网络带宽、接受能力进行选择、接收、解码和播放。DASH为视频流传输提供了一种高效、便捷的传送方式,特别适用于视频直播、点播、多屏显示等业务。随着DASH标准的逐渐完善,基于HTTP的网络视频流传输必将具有更加广泛的应用前景。展开更多
视频流量逐渐在网络中占据主导地位,且视频平台大多对其进行加密传输。虽然加密传输视频可以有效保护用户隐私,但是也增加了监管有害视频传播的难度.现有的加密视频识别方法基于TCP(Transmission Control Protocol)传输协议头部信息和HT...视频流量逐渐在网络中占据主导地位,且视频平台大多对其进行加密传输。虽然加密传输视频可以有效保护用户隐私,但是也增加了监管有害视频传播的难度.现有的加密视频识别方法基于TCP(Transmission Control Protocol)传输协议头部信息和HTTP/1.1(Hypertext Transfer Protocol Version1.1)的传输模式,提取应用层音视频数据单元传输长度序列来实现视频识别.但是随着基于UDP(User Datagram Protocol)的QUIC(Quick UDP Internet Connections)协议及基于QUIC实现的HTTP/3(Hypertext Transfer Protocol Version 3)协议应用于视频传输,已有方法不再适用.HTTP/3协议缺少类似TCP的头部信息,且使用了多路复用机制,并对几乎所有数据进行了加密,此外,视频平台开始使用多片段合并分发技术,这给从网络流量中精准识别加密视频带来了巨大挑战。本文基于HTTP/3协议中的控制信息特征,提出了从HTTP/3加密视频流中提取数据传输特征并进行修正的方法,最大程度复原出应用层音视频长度特征.面向多片段合并分发导致的海量匹配问题,本文基于明文指纹库设计了键值数据库来实现视频的快速识别.实验结果表明,本文提出的基于HTTP/3传输特性的加密视频识别方法能够在包含36万个真实视频指纹的YouTube大规模指纹库中达到接近99%的准确率,100%的精确率以及99.32%的F1得分,对传输过程中加人了填充顿的Facebook平台,在包含28万个真实视频指纹的大规模指纹库中达到95%的准确率、100%的精确率以及96.45%的F1得分,在具有同样特性的Instagram平台中,最高可达到97.57%的F1得分,且本方法在所有指纹库中的平均视频识别时间均低于0.4秒.本文的方法首次解决了使用HTTP/3传输的加密视频在大规模指纹库场景中的识别问题,具有很强的实用性和通用性.展开更多
基于HTTP的动态自适应流媒体(Dynamic adaptive streaming over HTTP,DASH)是一种可利用Web服务器提供在线高质量视频流的自适应码率流技术,决定了视频播放性能。传统动态自适应码率选择算法存在考虑因素单一、播放缓冲区长度受限、带...基于HTTP的动态自适应流媒体(Dynamic adaptive streaming over HTTP,DASH)是一种可利用Web服务器提供在线高质量视频流的自适应码率流技术,决定了视频播放性能。传统动态自适应码率选择算法存在考虑因素单一、播放缓冲区长度受限、带宽不稳定等问题,因此,改进与优化动态自适应码率选择算法十分必要。针对客户端缓冲区长度受限和带宽不稳定造成的视频播放卡顿现象,综合考虑网络带宽和客户端缓冲区因素,提出一种基于缓冲区阈值调整的动态自适应码率选择算法(Dynamic adaptive rate selection algorithm based on buffer threshold adjustment,BT DARA)。该算法首先通过获取不同视频段大小和下载速率,计算网络吞吐量并对视频下载时间进行预测,然后结合缓冲区视频片段长度状态进行码率选择。特别地,在视频播放过程中对不同阶段采取不同的视频码率选择策略,并在客户端缓冲区达到临界值时动态调整缓冲区阈值参数,以此增加缓冲区长度,减少码率切换次数,确保视频播放的稳定性。实验结果表明,该算法能提高视频播放的码率,保证视频播放质量和稳定性,减少了视频开始播放的启动时间,为用户提供良好的视频播放体验。展开更多
随着互联网技术的快速发展以及智能设备的普及,基于HTTP的动态自适应流媒体(Dynamic Adaptive Streaming over HTTP,DASH)业务发展迅速.但在带宽受限网络中,大规模用户的视频请求,将会加重网络负载,严重影响网络带宽资源的有效利用,同...随着互联网技术的快速发展以及智能设备的普及,基于HTTP的动态自适应流媒体(Dynamic Adaptive Streaming over HTTP,DASH)业务发展迅速.但在带宽受限网络中,大规模用户的视频请求,将会加重网络负载,严重影响网络带宽资源的有效利用,同时用户码率调节缺乏全局协调控制机制,容易造成网络拥塞.针对软件定义网络中的DASH视频传输业务,将视频业务提供商长期平均收益最大化作为优化目标,设计并实现了基于神经元动态规划的DASH视频路由和用户码率调节联合决策算法.最后,通过在Mininet平台上建立SDN(Software-Defined Networking)网络环境并进行对比实验,我们验证了本文提出的联合决策算法能够提高网络带宽资源利用率,最大化DASH视频业务提供商长期平均收益.展开更多
文摘为提升移动流媒体的用户体验质量(quality of experience,QoE)和设备续航时长,提出一种基于移动设备电量状态的QoE模型,模型的参数包括初始延迟、重新缓冲、平均视频质量、码率切换平滑度以及设备电量状态。在模型的基础上,给出一种基于网络吞吐量,同时又考虑设备电量状态的码率自适应策略。策略能避免客户端在设备剩余电量处于中、低状态时,请求高码率视频,导致过多的电池电量消耗。实验结果表明,该策略能有效平衡不同电量状态下用户对视频质量和设备续航的需求。
文摘近年来,基于HTTP(Hyper Text Transport Protocol)的网络视频流传输方式越来越受到人们的关注,同时出现了若干相近的解决方案,实现了在HTTP上的动态自适应视频流传输。MPEG和3GPP在这些方案的基础上制定了一个新的基于HTTP的网络动态自适应流传输标准——DASH,并成为ISO/IEC国际标准于2012年正式发布。DASH系统工作于普通的Web服务器/客户端方式,它将同一内容的多个不同质量的视频流分片、定位和描述,使得这些视频分片能够如同普通文件一样通过HTTP协议在网络中传输。用户可以向服务器请求所需的视频,动态自适应地根据自己的网络带宽、接受能力进行选择、接收、解码和播放。DASH为视频流传输提供了一种高效、便捷的传送方式,特别适用于视频直播、点播、多屏显示等业务。随着DASH标准的逐渐完善,基于HTTP的网络视频流传输必将具有更加广泛的应用前景。
文摘视频流量逐渐在网络中占据主导地位,且视频平台大多对其进行加密传输。虽然加密传输视频可以有效保护用户隐私,但是也增加了监管有害视频传播的难度.现有的加密视频识别方法基于TCP(Transmission Control Protocol)传输协议头部信息和HTTP/1.1(Hypertext Transfer Protocol Version1.1)的传输模式,提取应用层音视频数据单元传输长度序列来实现视频识别.但是随着基于UDP(User Datagram Protocol)的QUIC(Quick UDP Internet Connections)协议及基于QUIC实现的HTTP/3(Hypertext Transfer Protocol Version 3)协议应用于视频传输,已有方法不再适用.HTTP/3协议缺少类似TCP的头部信息,且使用了多路复用机制,并对几乎所有数据进行了加密,此外,视频平台开始使用多片段合并分发技术,这给从网络流量中精准识别加密视频带来了巨大挑战。本文基于HTTP/3协议中的控制信息特征,提出了从HTTP/3加密视频流中提取数据传输特征并进行修正的方法,最大程度复原出应用层音视频长度特征.面向多片段合并分发导致的海量匹配问题,本文基于明文指纹库设计了键值数据库来实现视频的快速识别.实验结果表明,本文提出的基于HTTP/3传输特性的加密视频识别方法能够在包含36万个真实视频指纹的YouTube大规模指纹库中达到接近99%的准确率,100%的精确率以及99.32%的F1得分,对传输过程中加人了填充顿的Facebook平台,在包含28万个真实视频指纹的大规模指纹库中达到95%的准确率、100%的精确率以及96.45%的F1得分,在具有同样特性的Instagram平台中,最高可达到97.57%的F1得分,且本方法在所有指纹库中的平均视频识别时间均低于0.4秒.本文的方法首次解决了使用HTTP/3传输的加密视频在大规模指纹库场景中的识别问题,具有很强的实用性和通用性.
文摘基于HTTP的动态自适应流媒体(Dynamic adaptive streaming over HTTP,DASH)是一种可利用Web服务器提供在线高质量视频流的自适应码率流技术,决定了视频播放性能。传统动态自适应码率选择算法存在考虑因素单一、播放缓冲区长度受限、带宽不稳定等问题,因此,改进与优化动态自适应码率选择算法十分必要。针对客户端缓冲区长度受限和带宽不稳定造成的视频播放卡顿现象,综合考虑网络带宽和客户端缓冲区因素,提出一种基于缓冲区阈值调整的动态自适应码率选择算法(Dynamic adaptive rate selection algorithm based on buffer threshold adjustment,BT DARA)。该算法首先通过获取不同视频段大小和下载速率,计算网络吞吐量并对视频下载时间进行预测,然后结合缓冲区视频片段长度状态进行码率选择。特别地,在视频播放过程中对不同阶段采取不同的视频码率选择策略,并在客户端缓冲区达到临界值时动态调整缓冲区阈值参数,以此增加缓冲区长度,减少码率切换次数,确保视频播放的稳定性。实验结果表明,该算法能提高视频播放的码率,保证视频播放质量和稳定性,减少了视频开始播放的启动时间,为用户提供良好的视频播放体验。