期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于高斯pLSA模型与项目的协同过滤混合推荐 被引量:5
1
作者 陈登科 孔繁胜 《计算机工程与应用》 CSCD 北大核心 2010年第23期209-211,234,共4页
协同过滤是推荐系统中常用的一种技术。以往的推荐算法往往只从用户或商品的角度单一地进行推荐,在推荐准确率上存在瓶颈和局限性。提出了一种新的混合推荐方法——结合基于高斯概率潜在语义分析模型与改进的基于项目的协同过滤算法,通... 协同过滤是推荐系统中常用的一种技术。以往的推荐算法往往只从用户或商品的角度单一地进行推荐,在推荐准确率上存在瓶颈和局限性。提出了一种新的混合推荐方法——结合基于高斯概率潜在语义分析模型与改进的基于项目的协同过滤算法,通过建立用户群体混合模型和基于目标项目的邻居集进行预测推荐。实验证明该算法与其他协同过滤算法相比具有更高的准确率。 展开更多
关键词 概率潜在语义分析 高斯模型 基于项目的协同过滤 基于模型的协同过滤 混合推荐
在线阅读 下载PDF
加入标签迁移的跨领域项目推荐算法 被引量:4
2
作者 葛梦凡 刘真 +1 位作者 王娜娜 田靖玉 《计算机科学》 CSCD 北大核心 2019年第10期1-6,共6页
大多数推荐算法常采用基于迁移学习的跨领域推荐技术,借助辅助领域的丰富数据信息来解决传统单域推荐中普遍存在的数据稀疏等问题。但若迁移的知识比较单一,没有结合用户行为,则往往会在目标领域导致负迁移、推荐结果不佳等问题。因此,... 大多数推荐算法常采用基于迁移学习的跨领域推荐技术,借助辅助领域的丰富数据信息来解决传统单域推荐中普遍存在的数据稀疏等问题。但若迁移的知识比较单一,没有结合用户行为,则往往会在目标领域导致负迁移、推荐结果不佳等问题。因此,考虑结合其他知识来辅助完成目标领域的学习任务。利用用户异构行为改善推荐结果,正是近年来的新兴研究热点之一。在用户数据中,标签与用户的真实偏好相关,通常能够反映用户或项目的部分隐式特征。通过结合迁移学习及用户标签数据,文中提出了基于标签迁移的跨领域项目推荐算法ITTCF(Item-based Tag Transfer Collaborative Filtering)。该算法摒弃了在跨领域迁移推荐中仅对评分模式进行挖掘迁移的单一辅助方式,将用户行为反馈与数字评分相结合,融合了评分模式和标签这两种异构用户行为。在多个数据集中的实验结果均表明,ITTCF具有更好的RMSE和MAE值,较传统算法分别提升了1.61%~6.67%和1.97%~8.83%。 展开更多
关键词 迁移学习 跨领域推荐 标签 基于项目的协同过滤
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部